Empirical estimation of astrophysical photodisintegration rates of $^{106}\mathrm{Cd}$ and $^{108}\mathrm{Cd}$

S. S. Belyshev¹, A. A. Kuznetsov², K. A. Stopani²

¹Department of Physics, Lomonosov Moscow State University ²Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

ND-2016, September 13, 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Introduction

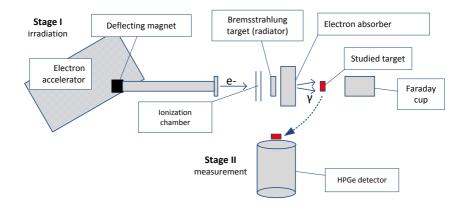
Previous photon activation experiments (at the SINP MSU microtron):

- 1. 2013 [S. S. Belyshev et al., Phys. At. Nucl. 77, 809 (2014)]
 - $1.1\,$ relative yields on CdO target:

Reaction	Exp.	Theor.
$^{106}Cd(\gamma, n)^{105}Cd$	0.57 ± 0.02	0.97-1.06
$^{106}Cd(\gamma, p)^{105}Ag$	0.47 ± 0.06	0.12-0.143
108 Cd $(\gamma, n)^{107}$ Cd	1.15 ± 0.08	1.04-1.2

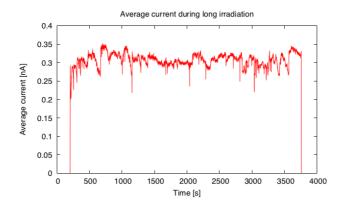
 $1.2\,$ reactions on other isotopes: good agreement

- 2. 2015 [S. S. Belyshev et al., Phys. At. Nucl. 79, 5 (2016)]
 - 2.1 absolute yields (in $10^6 \times$ 1 $/\mu C)$ on natural Cd:


Reaction	Exp.	Theor.
$^{106}Cd(\gamma, n)^{105}Cd$	1.41 ± 0.05	2.8 ± 0.1
$^{106}Cd(\gamma, p)^{105}Ag$	1.5 ± 0.1	0.33 ± 0.02
$^{108}Cd(\gamma, n)^{107}Cd$	2.7 ± 0.2	2.8 ± 0.1

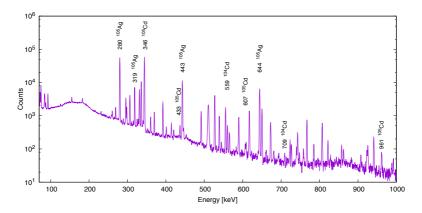
Photoproton reactions are very often underestimated by stat. models for A > 40, however, ¹⁰⁶Cd made interesting due to good agreement for other isotopes. => Repeat measurement with monoisotopic target to reduce background from ¹¹¹Cd.

Cadmium targets


Target	CdO	Nat. Cd	Enriched Cd (this work)
Irradiation	2013	2015	2016
Isotopes, at.%			
106	0.63	1.25	74.2 ± 0.4
108	0.44	0.89	0.52
110	6.25	12.49	4.16
111	6.4	12.80	3.70
112	12.07	24.13	6.6
113	6.11	12.22	3.10
114	14.37	28.73	6.6
116	3.75	7.49	1.12
Mass, g	0.3	0.64	0.25

Photon activation technique

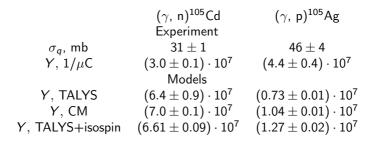
- RTM-55 racetrack microtron, E_e = 55.5 MeV, 10 mA pulsed current, no. of orbits: 11.
- Average current measured by a Faraday cup and charge collected from the target. Normalized using a copper monitor target.


Measurement

- ▶ Perfromed 4 irradiations for 10 min–1 h for short and long $T_{1/2}$ at average current 0.2–0.3 μ A
- Bremsstrahlung target: 2.1 mm W
- After irradiation target transferred to low-background HPGe detector
- Initial count rate 27000 s⁻¹ at 15 cm from detector.
- Continuous spectrum measurement by automatic database for two days after irradiation and 26 days in 4 months after irradiation.

Spectrum analysis

Sample spectrum 12 hr after irradiation

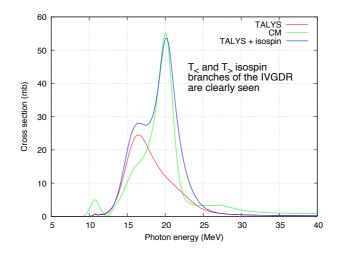

Unstable reaction products identified by peak energies and intensities and by $T_{1/2}$ obtained by fitting decay curves.

The following peaks were used for ¹⁰⁵Cd: 346.87, 433.24, 607.22, 961.84, 1302.459, 1388.48, 1693.34.

For 105 Ag: 63.98, 280.41, 319.14, 331.51, 344.52, 443.37, 644.55, 1087.94 Decay of 105 Ag to 105 Cd taken into account by calculating the independent yield.

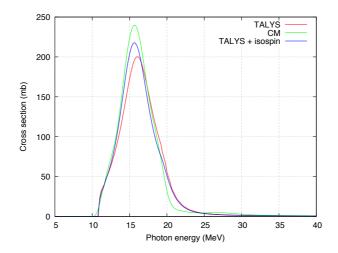
э

Obtained yields



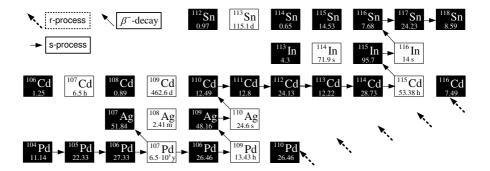
 $(\gamma, n) + (\gamma, p)$ in agreement with dipole sum rule in all cases.

*)CM = Combined model of photonuclear reactions (semi-microscopic description of photoabsorption followed by HF, preeq. or QD decay with global optical potential) [B. S. Ishkhanov and V. N. Orlin, Phys. At. Nucl. **74**, 19 (2011)] **)"TALYS + isospin" = modified TALYS to artificially include isospin splitting


effect of the IVGDR

Model cross sections ${}^{106}Cd(\gamma, p)$ reaction

Other potential sources of $\sigma(\gamma, p)$ enhancement: GQR (included in CM, low), direct proton emission (expected at about 34 MeV), competition with (γ, γ') at 7–10 MeV.


Model cross sections ${}^{106}Cd(\gamma,n)$ reaction

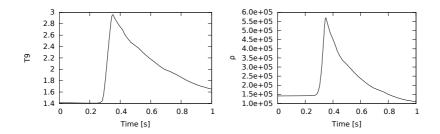
Photoneutron cross sections are almost equally overestimated by all models.

◆□>
◆□>
● = ◆□>
● = ◆□

p-nuclei

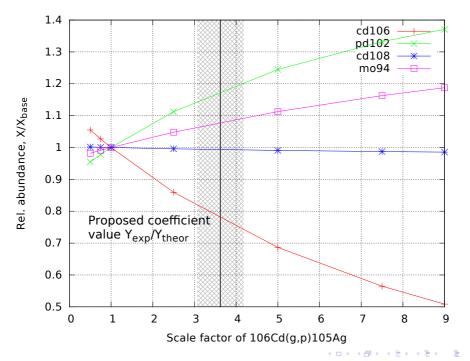
 106,108 Cd belong to a group of 35 nuclei from 74 Se to 196 Hg far from the *s*- and *r*-process trajectories.

イロト 不得 とうき イヨト

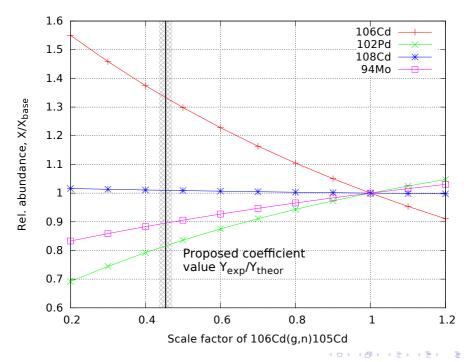

ж

Produced in the *p*-process of nucleosynthesis, mainly photodisintegrations in core-collapse supernova at several GK.

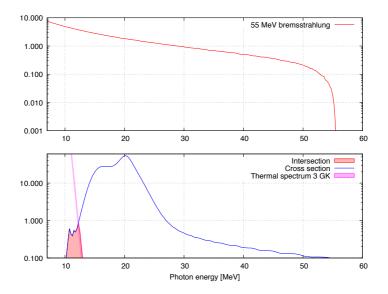
 (γ,p) especially important for ¹⁰⁶Cd: $B_p = 7.4$ MeV, $B_n = 10.9$ MeV.


Nuclear network calculations

- ▶ ${}^{106}Cd(\gamma, n)$ and (γ, p) rates calculated with "TALYS+isospin"
- A slightly modified burning routine from the MESA star evolution package used to calculate final abundances as a function of scaling factors applied to the rates
- Other reaction rates from JINA REACLIB
- ▶ Initial abundances, temperature and density profiles of a $25M_{\odot}$ SNII as in [Rapp *et al.*, ApJ 653, 474 (2006)]


▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

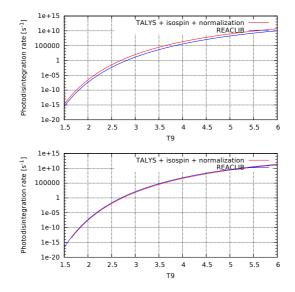
Impact of rate normalization of the ${}^{106}Cd(\gamma,p)$ reaction


900

Impact of rate normalization of the ${}^{106}Cd(\gamma,n)$ reaction

 $\mathcal{O} \mathcal{O} \mathcal{O}$

Bremsstrahlung and stellar photon spectrum



Very wide bremsstrahlung spectrums gives only rough estimates of rates normalization. However, no other experimental data on ¹⁰⁶Cd available. More reliable at *p*-process sites with higher temperatures (accretion disks, ...).

うくで

э

Photodisintegration rates on ¹⁰⁶Cd

Almost an order of magnitude difference for (γ, p) . (γ, n) is within 2 times difference from the DB value.

◆□>
◆□>
● = ◆□>
● = ◆□

Rates in REACLIB format

Parameterization of the proposed rates

$$\lambda = \exp\left(a_0 + \sum_{i=1}^5 a_i T_9^{\frac{2i-5}{3}} + a_6 \ln T_9\right) \qquad [1/sec]$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三国 - のへの

►
106
Cd (γ, p) 105 Ag reaction rate
 $a_0 = -2.278902e+03, a_1 = -5.612792e+02, a_2 = 7.767336e+03,$
 $a_3 = -5.150742e+03, a_4 = 1.580728e+02, a_5 = -5.632337e+00,$
 $a_6 = 3.708693e+03$

▶
106
Cd(γ ,n) 105 Cd reaction rate
 $a_0 = -3.167238e+03$, $a_1 = -7.286351e+02$, $a_2 = 8.503323e+03$,
 $a_3 = -4.819095e+03$, $a_4 = 1.304085e+02$, $a_5 = -4.259804e+00$,
 $a_6 = 3.735719e+03$

Conclusions and outlook

- Experimental measurement of yields and cross sections per equivalent quantum on enriched ¹⁰⁶Cd target is performed.
- Good agreement with theory is seen for photodisintegration reactions on ¹⁰⁸Cd, but large difference on ¹⁰⁶Cd.
- Cross sections of ¹⁰⁶Cd(γ, n) and (γ, p) calculated with addition of the isospin splitting effect of the IVGDR are most close to the experimental results.
- The cross sections are used to calculate photodisintegration rates and examine effects of their variation on the produced *p*-nuclei abundances.
- Estimated photodisintegration rates on ¹⁰⁶Cd are obtained by applying experimental scaling factors.
- Experiments with monochromatic photons on Cd are needed.
- ▶ Also on ¹⁰²Pd, as indications of large photodisintegration yields were seen.

Thanks!

◆□ → < 個 → < 差 → < 差 → < 差 → < 2 → < 2 </p>