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A model for direct photonuclear reactions on heavy deformed nuclei is formulated.6

This model is used for calculations of direct (γ, p) reactions on 160Gd and 184,186W.7

Importance of direct photoeffect for these nuclei at Eγ ∼ 30 MeV is demonstrated.8

INTRODUCTION9

Photonuclear reactions induced by photons with energies Eγ . 40 MeV proceed mainly10

through formation of a compound nucleus. However, as measurements show, this photoabsorp-11

tion mechanism only describes a part of the yield of photoprotons at the tail of the giant dipole12

resonance (GDR) from A > 100 nuclei. It indicates that at photon energies exceeding the GDR13

energy a direct photoeffect contribution to the (γ,p) reaction is very noticeable. In this case14

the photon energy is spent not on an excitation of a compound system, but on knock-out of a15

nucleon from the nuclear surface, and the resulting nucleus remains in the ground or a low-lying16

excited state.17

When a nucleon is knocked out of the peripheral region of a nucleus following absorption18

of a photon with the orbital momentum l ≈ kγR, where kγ = Eγ/~c fm−1 is the transferred19

value of the wave vector, and R = 1.2A1/3 fm is the nuclear radius. It is natural to expect20

that when l is approximately integer quasi-resonances appear in the direct photoeffect reaction21

cross section. The lowest lying “resonance” is expected at l = 1, which corresponds to electric22

dipole absorption and is placed at the energy of about Eγ ∼ 165A−1/3 MeV. Thus, a noticeable23

direct photonucleon yield in the Eγ ∼ 30 MeV region should be expected for heavy nuclei with24

A ∼ 150—200.25

In the case of a spherical nucleus the direct photoeffect amplitude corresponding to26

knockout of a nucleon from a single-particle level jm can be approximated by a product27

〈f |a+(jm)|i〉〈k(−)|Hptb|jm〉sp, where the first term is the matrix element of the a+(jm) opera-28

tor for a transition from the |i〉 state of the initial nucleus to the |f〉 state of the final nucleus29

(genealogic coefficient), and the second term describes a single-particle nucleon transmission30

induced by electromagnetic field from the jm orbit to a stationary scattered state |k(−)〉 in the31
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mean field of the final nucleus with waves of outgoing nucleon with a wave vector k converging32

at infinity. In order to calculate the genealogical coefficient 〈|a+(jm)|i〉 one has to know the33

detailed structure of the states |i〉 and |f〉 which presents significant difficulties during direct34

photoeffect calculations in spherical nuclei.35

This problem is non-existent for description of direct photoeffect in heavy deformed nuclei36

since the ground state wave function of the target nucleus in intrinsic coordinate system can37

be approximated as an anti-symmetrized product of single-particle nucleon states positioned at38

filled orbits of a deformed nuclear potential. However, due to deformation the step of calculation39

of scattered states of the outgoing nucleon in the mean nuclear field of the final nucleus becomes40

rather complicated.41

Present work presents a detailed description of construction of scattered states in deformed42

mean field and an approximate model of direct photoeffect in heavy deformed nuclei due to43

electric dipole absorption is formulated.44

I. ADIABATIC APPROXIMATION45

We formulate the main assumptions that are used in description of the direct nuclear pho-46

toeffect:47

1. only heavy axially symmetric deformed nuclei are considered;48

2. the speed of rotational motion of the deformed nucleus and, thus, that of the potential is49

small in comparison with the speed of the outgoing nucleon knocket out of the nucleus50

by the photon, so it is not disturbed by this rotation (adiabatic condition);51

3. it is assumed that the photon interacts only with one of the nucleons on outermost orbit52

of the valence shell. Other nucleons remain in their initial states, and the final nucleus is53

produced in ground state;54

4. interaction of the electromagnetic field with the nucleus which results in direct photoeffect55

is considered in terms of time-dependent perturbation theory under the assumption that56

the main contribution to the reaction is from electric dipole absorption;57

5. deformed optical potential is taken as the mean field in which the outgoing nucleon motion58

takes place (its construction is described below).59

Within the adopted assumtions the differential cross section of direct photoeffect in the60

x′, y′, z′ intrinsic frame, the z′ axis of which is directed along the symmetry axis of the nucleus,61
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can be represented as62

dσint(Eγ, θ
′, φ′)

dΩ′
=

4

3
π3 mkEγe

2
eff

c~3
×

× 1

2

∑
µ=±1

∑
s=± 1

2

∣∣∣∣∣∑
ν

D1
µν(ω)〈〈(ks)(−)|r′Y1ν(θ

′, ϕ′)|β〉

∣∣∣∣∣
2

, (1)

where m is the reduced mass of the nucleon, eeff is the effective nucleon charge (equal to eN/A63

for a proton, and −eZ/A for a neutron), |(ks)(−)〉〉 is the scattering state in the mean field of a64

finite nucleus with vanishing at infinity waves, that corresponds to emission of a nucleon with65

the wave vector k and z′ projection of spin of s = ±1
2

(kak variant: sz), k = |k| =
√

2mε/~66

is the absolute value of the wave vector of the outgoing nucleon, ε = Eγ − Bthr is its energy67

(Bthr is the nucleon separation energy in the target nucleus), ϑ′, φ′ are the polar and asymuthal68

nucleon emission angles relative to the intrinsic coordinate frame, |β〉 is the single particle state69

from which the nucleon is knocked out (since the target nucleus is axially symmetric it has70

a defined value mβ of angular momentum projection to the symmetry axis z′), D1
µν(ω) is the71

finite rotation matrix describing conversion of the dipole moment operator from the intrinsic72

x′, y′, z′ to the laboratory x, y, z frame, where the z axis corresponds to the direction of the73

incident photon, ω ≡ θ1, θ2, θ3 are the Euler angles that describe the rotation of the intrinsic74

frame relative to the laboratory frame x, y, z, and the µ = ±1
2

quantum number account for75

two possible circular polarization states of the photon.76

Summation in (1) takes into account different orientations of the spin of the outgoing nucleon77

and averaging over possible photon polarization states. — eto nado?78

If the proton (neutron) number is even then the outer-most orbit contains two nucleons79

with jz′ = ±mβ each being knocked out by the photon with equal probability. This should80

imply two-fold increase of the cross section (1). However, due to pairing of the nucleons the81

probability that the nucleon pair takes the state ν close to the Fermi surface is less than 1. In82

deformed nuclei this probability can be approximated by the following expression [1]:83

v2
ν =

1

2

[
1− εν − λ√

(εν − λ)2 −∆2
ν

]
, (2)

where εν is the energy of the single-particle state, λ is the chemical potential, and ∆ν is the84

pairing energy. Since the energy of the outermost orbit β is approximately equal to λ an85

approximate relationship v2
β ≈ 1

2
holds for this state and no additional coefficient in eqref1 is86

required.87
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The |(ks)(−)〉〉 state can be expressed as a spherical harmonics expansion:88

|(ks)(−)〉〉 =
~√
mk

∞∑
l=0

l+ 1
2∑

j=|l− 1
2
|

j∑
m=−j

(lm− s 1

2
s|jm)Y ∗lm−s(θ

′, φ′)|α(−)〉〉, (3)

where |α(−)〉〉 ≡ |(ε ljm)(−)〉〉 denotes scattering states in the nuclear mean field with the energy89

ε = ~2k2
2m

, which while not being eigenstates of l2 and j2 operators in the case of deformed field90

(and do not have corresponding definite quantum numbers l and j) have a special property91

that a wave packet built with them
∞∫
−∞

γ/π
(ε−ε0)2+γ2

e−iεt|α(−)〉〉 dε at t → +∞ becomes a wave92

packet
∞∫
−∞

γ/π
(ε−ε0)2+γ2

e−iεt|εljm〉〉free dε of freely moving nucleons with fixed l, j. With spheroidal93

deformation the |α(−)〉〉 states have also a definite parity π and projection m of the moment j94

onto the nuclear symmetry axis. The ~√
mk

factor accounts for the difference in the normalization95

of the |(ks)(−)〉〉 and |(α(−)〉〉 states:96

〈〈(k′s′)(−)|(ks)(−)〉〉 = δ(k′ − k) δs′s (4)

97

〈〈α′(−)|α(−)〉〉 = δα′α ≡ δ(ε′ − ε)δ(l′ − l)δ(j′ − j)δ(m′ −m). (5)

Substituting expansion (3) into (1) and summing over s yields98

dσintr(Eγ, ϑ
′)

dΩ′
=
π2

6

Eγe
2
eff

c~
∑
µ=±1

∑
ν

∑
ν′

∑
ljm

∑
l′j′

∑
l′′

D1
µν(ω)D1∗

µν ′(ω)×

× Pl′′(cosϑ′)(−1)j+j
′+ 1

2
−m+l′′ ĵ ĵ′ l̂ l̂′ l̂′′ 2

l l′ l′′
0 0 0

 j l j′

−m 0 m

×
×

j l′′ j′

l′ 1
2
l

 〈〈α(−)|r′Y1ν(θ
′, ϕ′)|β〉〈〈α ′(−)|r′Y1ν′(θ

′, ϕ′)|β〉∗
∣∣∣∣∣
ε′=ε

, (6)

where the notation Ĵ =
√

2J + 1 is used (???).99

Formula (6) describes angular distribution of photonucleons in the intrinsic coordinate frame100

and its fixed position relative to the laboratory frame is determined by the Euler angles ω.101

In order to obtain angular distribution of photonucleons (under adiabatic approximation) in102

laboratory frame one has to103

1. convert the components of the spherical tensor Pl′′(cosϑ′) =
√

4π
2l′′+1

Yl′′0(ϑ′, φ′) that is104

contained in (6) to the laboratory frame:105

Yl′′0(ϑ′, φ′) =
∑
m′′

Dl′′∗
m′′0(ω)Yl′′m′′(ϑ, φ); (7)
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2. perform averaging of the obtained expression over all possible directions of the nu-106

cleus in laboratory frame, which effectively reduces to computation of an integral107

1
8π2

π∫
0

sin θ1dθ1

2π∫
0

dθ2

2π∫
0

dθ3D
1
µν(ω)D1∗

µν ′(ω)Dl′′∗
m′′0(ω);108

3. after which summation over the µ, ν ′, and m′′ quantum numbers has to be performed.109

As a result the following expression for differential cross section of direct photoeffect in110

laboratory frame is obtained:111

dσ(Eγ, ϑ)

dΩ
=
π2

6

Eγe
2
eff

c~
(A0 + A2P2(cosϑ)) , (8)

where112

A0 =
2

3

∑
lj

∑
νm

∣∣∣∣∣〈〈α(−)|r′Y1ν(θ
′, ϕ′)|β〉

∣∣∣∣∣
2

, (9)

113

A2 = −
√

10

3

∑
lj

∑
l′j′

∑
νm

(−1)j+j
′+ 1

2
−m+ν ĵ ĵ′ l̂ l̂′

l l′ 2

0 0 0

×
×

 j 2 j′

−m 0 m

j 2 j′

l′ 1
2
l


 1 1 2

−ν ν 0

 〈〈α(−)|r′Y1ν(θ
′, ϕ′)|β〉 ×

× 〈〈α′(−)|r′Y1ν(θ
′, ϕ′)|β〉∗

∣∣∣∣∣
ε′=ε,m′=m

. (10)

As expected the angular distribution of direct photonucleons associated with E1 photon114

absorption is symmetric with respect to the ϑ = 90◦ angle between the directions of the outgoing115

nucleon and the incident photon.116

Integration of Eq. (8) over the polar ϑ and asimuthal φ angles of the outgoing nucleon yields117

total cross section of direct photoeffect in the considered approximation:118

σ(Eγ) =
4π3

9

Eγe
2
eff

c~
∑
lj

∑
νm

∣∣∣∣∣〈〈α(−)|r′Y1ν(θ
′, ϕ′)|β〉

∣∣∣∣∣
2

. (11)

At the end of this section it should be noted that all matrix elements in (9)–(11) are calculated119

in the intrinsic coordinate frame x′, y′, z′.120

II. SYSTEM OF EQUATIONS DESCRIBING COUPLED lj REACTION121

CHANNELS122

As it was mentioned above an axial symmetric deformed optical potential V (r, θ) will be123

used for description of the mean field where the motion of the outgoing nucleon takes place (in124
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subsequent discussion the prime marks of spatial variables in intrinsic coordinate frame will be125

omitted). It can be split into two parts:126

V (r, θ) = Vsp(r) + Vdef(r, θ), (12)

where Vsp(r) is a usual spheric optical potential (see [2]) and Vdef(r, θ) is a polar angle θ-127

dependent part of the optical potential, which leads to coupling between the reaction channels128

for scattered states with different moments l, j.129

As shown in [3] the scattered state |(ks)(−)〉〉 in potential (12) can be expressed in the form130

|(ks)(−)〉〉 = |(ks)(−)〉+
1

ε−H − iρ
Vdef|(ks)(−)〉, ρ→ +0, (13)

where H = Hsp + Vdef is the total single-particle hamiltonian of the scattering problem, Hsp =131

−~2
2m

∆ +Vsp is its spherical component, |(ks)(−)〉 is the scattered state with waves converging at132

infinity for the Hsp hamiltonian.133

An important property of (13) is fulfillment of proper boundary conditions for the scattered134

state |(ks)(−)〉〉. Expansion (3) can be used to transform it into equation for partial waves135

|α(−)〉〉:136

|α(−)〉〉 = |α(−)〉+
1

ε−H − iρ
Vdef|α(−)〉. (14)

Here, |α(−)〉 ≡ |(εljm)(−)〉 is the scattered state of a nucleon with waves converging at infinity137

in the spherical mean field Vsp, that is characterized by the nucleon energy ε, orbital and total138

angular momenta l and j, and the projection m of the angular moment on the nuclear symmetry139

axis. It is related to the regular solution |α〉 ≡ |εlmm〉 of the stationary Shroedinger equation140

Hsp|α〉 = ε|α〉 through the following relationship141

|α(−)〉 = e−iδα|α〉, (15)

where δα ≡ δlj is the scattered nucleon phase in the Vsp field.142

Matrix elements 〈〈α(−)|rY1ν(θ, ϕ)|β〉 that appear in the direct photoeffect cross section143

dσ
dΩ

(Eγ, ϑ) and σ(Eγ) (equations (8)–(11)) describe probability amplitudes of a E1 transition144

of a nucleon from the state |β〉 to the scattered state |α(−)〉〉. It is assumed that conjugated145

states (Dirac’s co-vectors) 〈〈α(−)| in continous spectrum and 〈n| in discrete spectrum have to146

be orthogonal to eigenstates |α(−)〉〉 and |n〉 of a non-hermitian hamiltonian H, that contains147

the complex optical potential.148

In order to construct such states we note that the states 〈Ψ1|, 〈Ψ2|, . . . , conjugated to the149

eigenvectors |Ψ1〉, |Ψ2〉, . . . of a non-hermitian hamiltonian H̃ 6= H̃+ = H̃∗ meet the necessary150

requirements if they are defined throught the following equations:151

〈Ψi|H̃ = Ei〈Ψi|, i = 1, 2, . . . (16)
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Indeed, in this case 〈Ψi|H̃|Ψk〉 = Ei〈Ψi|Ψk〉 = Ek〈Ψi|Ψk〉. It follows from this fact that152

〈Ψi|Ψk〉 = 0 when Ei 6= Ek.153

Equation (16) can be rewritten as (with ξ being the spin variable)

∑
ξ=± 1

2

∫
〈r′ξ′|H̃∗|rξ〉〈Ψi|rξ〉∗d3r = E∗i 〈Ψi|r′ξ′〉∗,

from which it follows that when H̃∗ 6= H̃ the wave function 〈Ψi|rξ〉 of the conjugated state 〈Ψi|154

is complex conjugate to a wave function of the H̃∗ eigenstate, and not one of the hamiltonian155

H̃.156

For the regular solution |α〉 of the Hsp hamiltonian this yields157

〈α|rξ〉 = 〈α|r〉〈α|r̂ξ〉 ≡ 〈εlj|r〉〈ljm|r̂ξ〉, (17)

where158

〈α|r〉 = 〈r|α〉 r→∞−→ i

2r

√
2m

π~2k

{
e−i(kr−

lπ
2

+δlj) − ei(kr−
lπ
2

+δlj)
}
, (18)

〈α|r̂ξ〉 = (lm− ξ 1

2
ξ|jm)Y ∗lm(θ, ϕ). (19)

It can be easily seen that with the presented definition of conjugate states 〈α| the normal-159

ization condition is fulfilled:160

〈α′|α〉 =

 ∞∫
0

〈α′|r〉〈r|α〉r2dr

(∑
ξ

(l′m′ − ξ 1

2
ξ|j′m′)(lm− ξ 1

2
ξ|jm)×

×
2π∫

0

dϕ

π∫
0

sin θ dθ Y ∗l′m′(θ, ϕ)Ylm(θ, ϕ)

)
= δ(ε′ − ε) δl′ l δj′j δm′m ≡ δα′α. (20)

The conjugate scattered state 〈α(−)| is determined from the relationship161

〈α(−)| = eiδα〈α|. (21)

Now we obtain an equation for the conjugate scattering state 〈〈α(−). From (16) we obtain

taking into account decomposition of the hamiltonian H in two parts

〈α(−)|(H − ε) = 〈α(−)|Vdef.

It follows that the conjugate state 〈〈α(−)| that satisfies equation 〈〈α(−)|(H − ε) = 0 can be162

expressed in the form163

〈〈α(−)| = 〈α(−)|+ 〈α(−)|Vdef
1

ε−H + iρ
, (22)
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where the sign in front of an infinitesimal constant ρ that pushes the singular point away from

the real-valued energy axis is chosen so that to ensure orthonormalization of the scattering

states, as it is demonstrated below. From (14) and (22) we have

〈〈α′(−)|α(−)〉〉 = δα′α +
〈α′(−)|Vdef|α(−)〉〉
ε′ − ε+ iρ

+ 〈α′(−)| 1

ε−H−iρ
Vdef |α(−)〉.

Then, using the equality

〈α′(−)| 1

ε−H−iρ
=

1

ε−ε′−iρ

{
〈α′(−)|+ 〈α′(−)|Vdef

1

ε−H−iρ

}
and once more (14) we obtain164

〈〈α′(−)|α(−)〉〉 = δα′α +
1

ε−ε′−iρ

{
− 〈α′(−)|Vdef|α(−)〉〉+

+〈α′(−)|Vdef|α(−)〉+ 〈α′(−)|Vdef|α(−)〉〉 − 〈α′(−)|Vdef|α(−)〉

}
= δα′α

Which proves the statement.165

The wave function of the scattered state 〈〈α(−)| has an overlap with the bound state wave166

function |β〉 only in the internal reaction region (when r . R ≈ 1.6A1/3 fm). In this limited167

space region spherical harmonic oscillator states |Nljm〉 can be used as basis states (the N168

quantum number corresponds to total number of oscillator phonons). The 〈〈α(−)|rY1ν(θ, ϕ)|β〉169

matrix element can, therefore, be expressed as170

〈〈α(−)|rY1ν(θ, ϕ)|β〉 =
∑
N ′l′j′

〈〈α(−)|N ′l′j′m〉〈N ′l′j′m|rY1ν(θ, ϕ)|β〉, (23)

where it is taken into account that in an axially symmetric field the scattered state is described171

with a definite magnetic quantum number m.172

The energy of the spherical oscillator quantum ~ω is reasonable to be chosen so as to re-173

produce the experimental mean-squared radius of the nucleon distribution inside the nucleus.174

This yields the value ~ω = 41A−1/3 MeV.175

The oscillator states |Nljm〉 can be used also to aproximate the initial state |β〉 from which176

the nucleon is knocked out. Thus, within the Nilsson model [4, 5] based on the deformed177

oscillator potential it will be of the form178

|β〉 =
∑
lj∈β

clj |Nβ ljmβ〉, (24)

where clj are the coefficients of expansion of the state |β〉 into spherical oscillator states calcu-179

lated by this model.180
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By substituting (24) into the matrix element 〈N ′l′j′m|rY1ν(θ, ϕ)|β〉, we obtain181

〈N ′l′j′m|rY1ν(θ, ϕ)|β〉 =
∑
lj∈β

clj〈N ′l′|r|Nβl〉〈l′j′m|Y1ν(θ, ϕ)|ljmβ〉, (25)

where the radial matrix element 〈N ′l′|r|Nβl〉 can be calculated using the analytical expres-182

sion given in [5], and the angular matrix element 〈l′j′m|Y1ν(θ, ϕ)|ljmβ〉 is determined by the183

expression184

〈l2j2m2|Ylν(θ, ϕ)|l1j1m1〉 = (−1)m2− 1
2

√
1

4π
l̂2 l̂1 ĵ2 ĵ1 l̂

l2 l l1

0 0 0

×
×

 j2 l j1

m2 −ν −m1

j2 l j1

l1
1
2
l2

 . (26)

The problem of calculation of the probability amplitudes (23) is therefore reduced to calcu-185

lation of the Nljm components of the conjugate scattered states 〈〈α(−)| in the internal region186

of the reaction.187

In order to obtain the system of equations connecting this components and, thus, different lj

reaction channels we reformulate expression (22) for the conjugate scattered state in a different

way. Namely, using the equality

1

ε−H + iρ
=

1

ε−Hsph + iρ
+

1

ε−H + iρ
Vdef

1

ε−Hsph + iρ
,

we transform it to the form188

〈〈α(−)| = 〈α(−)|+ 〈〈α(−)|Vdef
1

ε−Hsph + iρ
. (27)

Let us expand the set of states |α〉 = |εljm〉 by including not only regular continuous spec-189

trum solutions of the Shroedinger equation Hsph|α〉 = ε|α〉 but also eigenstates of Hsph from190

discrete spectrum. Then, after multiplication of Eq. (27) on the left with the oscillator state191

|N ′l′j′m〉 and using the fullness property of the extended basis |α〉 and for oscillator states192

|Nljm〉 (in a bounded space region where Vdef 6= 0 we obtain193

〈〈α(−)|N ′l′j′m〉 = δll′δjj′e
iδlj〈εlj|N ′l〉+

∑
N ′′l′′j′′

∑
N ′

1l
′
1j

′
1

∑
α̃

〈〈α(−)|N ′′l′′j′′m〉 ×

× 〈N ′′l′′j′′m|Vdef|N ′1l′1j′1m〉〈N ′1l′1j′1m|
1

ε−Hsph + iρ
|α̃〉〈α̃|N ′l′j′m〉, (28)

where 〈εlj|N ′l〉 =
∫∞

0
〈εlj|r〉〈r|N ′l〉r2 dr is the radial part of the inner product 〈α|N ′ljm〉 and194

integration over the extended basis is assumed, that is,
∑̃
α

≡
∑̃
l j̃ m̃

{
∫
ε̃≥0

dε̃+
∑

Reε̃+<0

}.195

The sum can be expressed as196
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∑
α̃

〈N ′1l′1j′1m|
1

ε−Hsph + iρ
|α̃〉〈α̃|N ′l′j′m〉 =

= δl′l′1δj′j′1

{ ∞∫
0

〈N ′1l′| ε̃l′j′〉 = 〈ε̃l′j′|N ′l′〉 dε̃
ε− ε̃+ iρ

+
∑
Reε̃<0

〈N ′1l′|ε̃l′j′〉〈ε̃ l′j′|N ′l′〉
ε− ε̃

}
. (29)

The second term in this expression can be neglected due to its small value in the region197

where the “direct photoeffect resonance” is formed due to a large value of |ε − ε̃| for discrete198

states. The first term inside curly braces can be expressed as199

fN ′
1N

′l′j′(ε) = P

∞∫
0

N ′1l
′|ε′l′j′〉ε′l′j′|N ′l′〉 dε′

ε− ε′
− iπN ′1l′|εl′j′〉εl′j′|N ′l′〉. (30)

It follows from (29) and (30) that relationship (28) can be rewritten as system of alge-200

braic equations in Nljm components of the scattered state 〈〈α(−)| in the internal region of the201

reaction:202 ∑
N ′′l′′j′′

WN ′l′j′, N ′′l′′j′′(ε,m)〈〈α(−)|N ′′l′′j′′m〉 = −δll′δjj′eiδlj〈εlj|N ′l〉, (31)

where the W matrix elements are defined by the expression203

WN ′l′j′, N ′′l′′j′′(ε,m) =
∑
N ′

1

fN ′
1N

′l′j′(ε)
′′l′′j′′m|Vdef|N ′l′j′m〉 −

− δN ′N ′′δl′l′′δj′j′′ . (32)

The number of significant components 〈〈α(−)|Nljm〉 of the scattered state in the internal204

reaction region, which determines the effective dimension of the W matrix at fixed values of205

energy ε = Eγ −Bthr and angular moment projection m = ν +mβ (see (11)), is not very large206

due to:207

1. conservation of parity: (−1)l = (−1)N = −(−1)Nβ ;208

2. finiteness of the orbital moments of the nucleon knocked out the peripheral region of a209

nucleus: 0 ≤ l . lmax = kR;210

3. satisfied conditions: l ≤ N ≤ Nmax, |l − 1
2
| ≤ j ≤ l + 1

2
, j ≥ |m| (where one can choose211

Nmax ≈ lmax + 4, which allows the 〈〈α(−)|Nljm〉 components with large orbital moments212

to be correctly described).213

The above limitations result in an optimal number of dimensions of the system (32) not214

exceeding 100 when Eγ . 50 MeV.215
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III. DEFORMED OPTICAL POTENTIAL216

The spherical optical potential takes the form [2]:217

Vsph(r) = −(V1 + iW1)
1

1 + exp[(r −R1)/a1]
−

−4iW2
exp[(r −R2)/a2]

{1 + exp[(r −R2)/a2]}2
− (V3 + iW3)

(
~
mπc

)2
1

2a3r
×

× exp[(r −R3)/a3]

{1 + exp[(r −R3)/a3]}2
s·l + VCoul(r), (33)

where the first two terms describe the nuclear interaction, the third term corresponds to the218

spin-orbit interaction, and the fourth term219

VCoul(r) =


3

2

qZe2

RCoul

(
1− r2

3R2
Coul

)
if r ≤ RCoul,

qZe2

r
if r ≥ RCoul

(34)

corresponds to the Coulomb interaction (q is 0 for a neutron, and 1 for a proton, RCoul =220

rCoulA
1/3 is the Coulomb radius).221

If a nucleus is axially symmetric ellipsoidal-shaped with semi-major and semi-minor axes c222

and d directed, respectively, along to the nuclear symmetry axis and orthogonal to it, then its223

surface can be described with a function224

R(θ) = R0(1− η)1/6(1− η cos2θ)−1/2, (35)

where R0 is the non-deformed radius (R3
0 = cd2), η = (c2 − d2)/c2 is a parameter that

characterizes the deformation connected with nuclear quadrupole deformation parameter δ =

3
2
(c2 − d2)/(c2 + 2d2) with the relationship

η =
2δ0

1 + 4δ0/3
.

The radial and angular dependencies of the nuclear component in the mean field is in a tight225

correlation with the density distribution of nuclear matter. If the thickness of the diffused sur-226

face layer of the nucleus is small in comparison with its radius, then variation of this mean field227

component due to deformation can be taken into account by introduction of angular dependence228

of R1 and R2 in (33) analogously to (35), substituting R0 with R1 and R2, respectively.229

As in [6] we neglect the effect of deformation on spin-oribit interaction and for the Coulomb230

field that strongly affects proton scattering we will use in the deformed optical potential V (r, θ)231
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the expression obtained in [7]:232

VCoul(r, θ)=



3

2

qZe2

RCoul

[(
1− r2

3R2
Coul

)
+

+
∞∑
n=1

(
αn + βn

r2

R2
Coul

P2(cos θ)

)
ηn

]
if r ≤ R(θ),

qZe2

[
1

r
+
∞∑
n=1

n∑
l=0

γnl
R2l

Coul

r2l+1
P2l(cos θ)ηn

]
if r > R(θ),

(36)

where R(θ) is determined from (35) by means of a substitution R0 → RCoul and the coefficients233

αn, βn, γnl are defined by the expressions234

αn =
n∑
k=0

(−1)kΓk(1/3)

(2n− 2k + 1)k!
, βn =

2

(2n+ 1)(2n+ 3)
,

γnl =
3

(2l + 3)!!

n∑
k=l

(−1)n−kΓn−k

(
2l + 3

6

)
(2l + 2k + 1)!!

22l+k(n− k)! k!
× (37)

×
l∑

m=0

(−1)m(4l − 2m)!

m! (2l −m)! (2l − 2m)! (2l − 2m+ 2k + 1)
.

(Here Γj(x) = x(x− 1) . . . (x− j + 1) with j = 1, 2, . . . ; Γ0(x) = 1.)235

The series in (36) converge when |η| < 1, thus describing the Coulomb component of the236

optical potential V (r, θ) at quadrupole deformations −0.3 < δ < 1.5. When δ . 0.4 only the237

first ten elements of the series need to be considered.238

According to definition (12) the potential Vdef(r, θ) that was previously used in derivation of239

the system of equation for the coupled lj-channels is given by the expression240

Vdef(r, θ) = V (r, θ)− Vsph(r). (38)

It can be expanded into spherical harmonics241

Vdef(r, θ) =
∑
λ

vλ(r)Yλ0(θ), (39)

where λ takes the values 0, 2, 4, . . . and the vλ(r) function is defined by the expression242

vλ(r) = 4π

1∫
0

Vdef(r, θ)Yλ0(θ) d(cos θ). (40)

Using expansion (39) one can rewrite the matrix element 〈N ′′l′′j′′m|Vdef|N ′l′j′m〉 from (32)243

in the form244

〈N ′′l′′j′′m|Vdef|N ′l′j′m〉 =
∑
λ

λN ′′l′′|vλ(r)|N ′l′〉〈l′′j′′m|Yλ0(θ)|l′j′m〉, (41)

where the radial matrix element 〈N ′′l′′|vλ(r)|N ′l′〉 is calculated numerically and the angular245

matrix element 〈l′′j′′m|Yλ0(θ)|l′j′m〉 according to (26).246
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IV. APPLICATION TO DESCRIPTION OF DIRECT (γ,P) REACTIONS ON247

160GD, 184,186W248

The above described model was used to calculate cross sections of direct photonuclear reac-249

tions (γ,p) in the case of 160Gd, 184,186W where in the literature there are available experimental250

data [8, 9] obtained in a bremsstrahlung beam using activation technique. The calculation was251

performed in the energy range Eγ = 0..60 MeV with energy pitch size h = 0.1 MeV. The ob-252

tained cross sections σ(Ei), i = 1, 2, . . . were then averaged over the energy window ∆ = 2 MeV:253

σ̄(E) =
∑
i

1

2π

∆h

(Ei − E)2 + (∆/2)2
σ(Ei), (42)

so as to equalize the energy resolution of theoretical and experimental procedures.254
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