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Analytically solvable model of charge dispersion in nuclear fission
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Using the asymmetric two-center shell model potentials in parametrized forms, the time-

dependent Schrodinger equation is solved analytically for the charge dispersion yields. We
obtain a Gaussian function, characterized by a most probable charge and the width of the
distribution. The hypothesis of an unchanged charge density and a minimum potential en-

ergy are given as limiting cases. Calculations are made for U and Cf.
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Empirically, the independent fractional charge
dispersion yields, for a given mass chain, have been
represented by a Gaussian distribution'

P(z) =(cn.)
'/ exp[ —(z —z~) /c]

characterized by the "most-probable charge" zz (the
mean value) and the width of the distribution c.
Also, many empirical postulates were proposed for
the charge divisions in fission; namely, the un-
changed charge distribution (UCD), the equal
charge displacement (ECD), and the minimum po-
tential energy (MPE) postulates. Recently, however,
a complete theory without any free parameter has
been given by one of the authors and collaborators,
where the charge dispersion yield is calculated by
numerically solving a stationary Schrodinger equa-
tion

HA'"g(k. ) =E~'g A'"g(k. )

with the Hamiltonian

a i a

)
1/2 ii) (B )

1/2

+ V((*4g

in a dynamical variable of charge asymmetry,

= (ZH ZL ) /(ZH +ZL ), —

between heavy (H) and light (L) fragments. The
coordinate of relative separation R of the two frag-
ments and the mass symmetry

g=(AH —AL )/(AH+AL )

of fragments are kept fixed, thereby assuming
decoupling of these parameters with g, . The poten-
tial V(g, ) at fixed R and fixed g is obtained in the
Strutinsky manner from the asymmetric two-center
shell model (ATCSM) using the adiabatic approxi-
mation for the shape parameters. The mass parame-
ters B;1 are consistently obtained from the cranking
formula in the Bardeen-Cooper-Schrieffer (BCS)
formalism. The theory gives the charge distribu-
tions of the Gaussian type that are independent of
the nuclear temperatures and fit the experimental
data both in peak (zz) and width (c). Within the
general framework of this theory, in this paper we

propose a simplified model to solve a time-
dependent Schrodinger equation analytically for

~
P(g„t) ~, which explicitly gives a Gaussian func-

tional form for the fractional charge dispersion
yields. The resulting Gaussian function fits the ex-
periments nicely, and the UCD and MPE hy-
potheses are incorporated in the expression for z&.

The time-dependent Schrodinger equation in g„
for fixed g, is given by

where the charge dispersion potential V(g, ) for fixed
R and fixed g calculated using the ATCSM can al-
ways be approximated nicely by a harmonic oscilla-
tor potential

V(g, ) = —,k(g, —g, '")'

Here P,
'" refers to the minimum in potential energy

surface V(g, ), and k is the force constant.
We solve Eq. (4) analytically, under the initial

condition of a very narrow Gaussian distribution,
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g(g„t =0)=exp[ ——,(g, —g,
" )2/r, .] UCD 2

(6a)

that gives the deviations from the UCD charge asymmetry, g, . Bt is the cranking mass B~ ~ averaged
z z z

over the g, coordinate, and I; gives the initial width. Also, the wave function f(g„t) is expanded in terms of
the stationary harmonic oscillator wave functions y„,

P(g„t)= g a„p„(g,)exp[ i (—n +1/2)tot],
n=0

with

a„=f t„(g,)it'((„0)dg,

and

co=(k/Bg )' (9),

It may be noted here that the wave function is normalized in the interval —ao to ao, though the range of
definition of our physical coordinate is —1 (g, ( 1. This is possible since in our model the initial width I; is

very small, such that

I ieger, . 00 00

f exp( —x /r;)dx =~I;f '
exp( —y )dy = ~l;f exp( —y )dy= f exp( —x /r;)dx,—iver, . lim 00

small I;

(6b)

where x =g, —g,
We obtain

~
g(g„t)

~
=(B~ err(t)) '~ exp[ —(g, —g, ) /r(t)], (10)

which is a Gaussian function with the half-width, in
terms of

7T 1

t = (n+ ——)2N

(g,
'" g—," )co—scot (12)

From Eq. (12) we get, for both the heavy and light
fragments, the explicit expressions for the most
probable charges:

Z~ =
2 z[1+(g, '"—(g,

'"—g, )coscot)]. (13)

Equations (10)—(13) present very interesting re-
sults. Equation (10) gives the probability, as a func-
tion of time, of the Gaussian form that is used
empirically in Eq. (1). Equation (11) shows that the
half-width r(t) oscillates periodically with frequen-

cy 2~ between the maximum and minimum values
I'; and I;/p, respectively, at the times

I (t) =I;(1+p —(1 p)cos2cot)—l2p, (11)

and the mean value

and (n/co)n; n =0. , 1,2, 3, . . . . Equations (12) and

(13) give, respectively, the mean values and the most
probable charges that are shown to oscillate periodi-
cally but with frequency co and are independent of
the initial width I;. Furthermore, Eq. (13) shows
that z~=z" in the limit of coscot =1 and equals
the MPE value z '", in another limit of coscot =0.
Also, zz-z '" for the limit cosset = —1 provided
the difference (P'"—g,

"
) is very small. Since co is

fixed for a given system [Eq. (9)), the determination
of both I and zz, and hence of probability, ap-
parently depends only on the proper estimation of
the scission time T.

We estimate the scission time T by considering
the relative motion of the fissioning system from the
top of the barrier to the scission point (R„). The
barrier, represented by height V~ and position R~,
can be approximated by a quadratic expression

V(R) = Vs —, K(R —Rs)~, R—)Rs.
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Newton's equation of motion for such a potential
(force = —BV/M) is given by

pR(t) =K[R (t) Rt—t]. (15)

The reduced mass p is used with a view that the rel-
ative motion is decoupled or, at least, weakly cou-
pled to the charge transfer g„since we find that in
general p =Biz (the cranking mass averaged in rela-
tive coordinate) and Bag «(BRttBg g

)' . Solving

Eq. (15), under the initial conditions of

V(Mev)

236
U

1577 [ 0 195

1575—

1573—

1571—

Re=9.7

R =R; at t =0 and R =R„at t =T, (16)

where R; is the initial position, located just pass the
saddle, we obtain

1 ln[(R„—Rs )/(R; —Rs )],

1569—

1567—

c =12.7—

2
U; =R(t =0)= —( Vg —V(R;))

p

1/2

with

~, =(K/p)' '.
We have used here the condition of conservation of
energy at the top of the barrier, i.e.,

Va ———,pR (t)+ V(R). (19)

This equation, with Eq. (14), gives the initial veloci-

ty

I
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FIG. 2. Scattering potential and the saddle and scission
nuclear shapes for U.

The choice of R; &Rz is made in view of the as-
sumed finite, small width of the initial distribution
(6) (see also Fig. 4). As R; increases, Eq. (17) shows
that T decreases.

The final charge distribution yield at the scission
time T is the probability

~
P(g„T)

~

scaled to the
fractional charge yield for the charge, say zH, in the
interval dg, ( =2/z):

V(MeV)

=co,(R; —Rs ), (20)
2 1P(zH)=-
z ml (T)

I/2 (g g )2

I (T)

(21)
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FIG. 1. Charge dispersion potential for U.

This gives us a Gaussian distribution function which
differs from Eq. (1) only in that the two Gaussians
have different amplitudes.

%e have tested our model by calculating the
charge distributions in the fission of U and Cf
for the mass asymmetries

~ g ~

=0.195 and 0.090,
respectively, which for the spontaneous fission
represent the mass chains AH ——141, AI ——95
and AH ——137.4, AL, ——114.6. However, the calcula-
tions are compared with the experimental data for
the heavy mass chains only.

Figures 1 and 2 give, respectively, the charge
dispersion potential V(g, ) and the scattering poten-
tial V(R) for the illustrative case of U, calculated
by using the ATCSM and the model expressions.
The model potentials are shown to represent the ex-
act ATCSM potentials very satisfactorily. The
values obtained for the constants are /c =9450.52
MeV, E =1.91 MeV fm
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FIG. 3. Theoretical charge distribution yields for ' U

compared with the experimental data of Ref. 3 for
A= 141 and 142.
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FIG. 4. Variation of initial width I; with the initial

position R; for the calculated final charge distribution

yield shown in Fig. 3. Notice the R; scale.

Using the corresponding positions of R~, R„,
and R;, as indicated in Fig. 2, and the reduced mass

p =56.76 ( in units of proton mass Mz) for 6U, we
obtain from Eq. (17) the scission time
T =17.44 && 10 sec. For Cf we get
T =21.04)& 10 sec. The two values are typical of
the adiabatic fission process. '

The calculated fractional charge distribution yield
is plotted in Fig. 3 for the model [Eq. (21)] and com-
pared with the experimental data as well as with
the exact theoretical calculations of Ref. 2. The
value of Sg =1.77X10 M& fm . The model is

shown to fit the data nicely and is also comparable
with the exact theoretical calculations, except for the
peak height. However, the rise in the peak height is
already known to be an effect of the use of the
averaged mass parameter Sg . The values of Zz for

the model, the exact calculations, and the UCD and
MPE hypothesis are, respectively, 54.97, 55.10, and
5495 and 54.97. There is hardly any significant
difference in the various predictions. Calculations
for Cf, /=0.090, give the same result with

zp ——53.44+0.02.
We have also tested the accuracy of the predic-

tions of our model. For an equally good fit to the
data, the variation of I; and R; is shown in Fig. 4.
It is interesting to observe that in spite of our treat-
ing the R and g, motions separately, the fixing of
their corresponding parameters R; and I; in our
model depend on each other. The width I; of the
initial distribution increases with the increase in the

value of R;, as one would expect. Our results for
Cf are identical.
The time evolution of the process (the widths, the

mean values, and the probability) can also be studied
in our model by using the explicit expressions
(10)—(13) or by solving the time-dependent
Schrodinger equation (4) numerically at different
times from 0 to T. So far, this has been of more in-
terest for the heavy ion collisions. It has been ob-
served experimentally that in collisions like 8.3
MeV/nucleon Fe on Fe, ' Ho, Bi, and U or
430 MeV Kr on '9 Mo, the charge widths at con-
stant mass asymmetry saturate after an initial rise,
and the mean values show a consistent increase with
the energy loss (or reaction time). This fast charge
equilibration process has been treated both quantum
mechanically (harmonic oscillator coupled to a
thermal bath) and statistically (transport theory)
with almost equal success. Within a single harmonic
oscillator model, similar to ours, it has been shown
that a dissipative mechanism (like friction) is a must
for the damping of the periodic oscillations given by
this model for the widths and mean values. For the
fission of natural nuclei, however, there are no sys-
tematic measurements for the heavy mass products,
though some data are available for the light mass
chains (A =98—104). In any case, for a dissipative
phenomena, a mechanism for losing energy has to be
included in a theory. This may mean invoking fric-
tional forces or other collective and intrinsic degrees
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of freedom in our model.
In conclusion, we have shown that a simple

analytical solution of the time-dependent
Schrodinger equation for the parametrized charge
dispersion and scattering potentials of the fragmen-
tation theory give an explicit Gaussian functional
form for the charge distribution yield with the most
probable charge containing the UCD and MPE hy-
pothesis as limiting cases. For the examples of U

and Cf studied here, both the hypothesis of UCD
and MPE are found to be equally satisfactory.
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