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Abstract:
Two modelsof nuclearexit channelreactionsareexamined:randomneck ruptureandmultichannelfission. Thefoundationsof both modelsare

explained,and the algorithmsfor their usageare given. Ample experimentalevidencefor the validity of these modelsis presented.Especially
fruitful is their synthesis.We now understandthe propertiesof thefragments,which areproducedin low-energy fission, much betterthanwe did
four yearsago.

1. Introduction

1.1. Scission versusfission

During the past50 yearsprogressin understandingnuclearfission was slow. Now we haveone of
thosesmall jolts of which the last happenedwhenthe fission isomerswere discovered[1.1,1.2]. And
yet, the new jolt broughtnot only moreunderstandingbut alsodrasticeffects.It is expectedto havean
impact on applications.

Formerlyfission was pictured as a sequenceof equilibrium states:the groundor compoundstate,of
course,was deemedto be in equilibrium. The samepropertywas attributedto the nucleusat its saddle
point. And evenat the momentof most violent disintegration,equilibrium was invoked. However,
nuclearfission is rather an evolution by instabilities (ch. 3). The word “scission” expressesviolent
motion somewhatbetter than “fission”, and so we call this report “nuclear scission”.

The secondreasonfor taking “scission” insteadof “fission” is to includelow-energydeep-inelastic
reactions[1.3]. Whenone speaksof fission, onemostlyhasnuclei in mind with massnumbersbetween
Aen = 200 and260. However, someprocessesin the exit channelsof deep-inelasticreactionsresemble
thoseof ordinary fission, andthe additionalinsight is in fact valuable(ch. 5). Namely, scissioningnuclei
as heavyas ~ = 476 were studied.Very light, extremelyasymmetricandhot scissioningnuclei were
also producedin this way. All this yielded a tremendousextrapolationbeyondthe data that could be
obtainedfrom ordinary fission. When these data were analyzed,it turned out that discrepancies
betweenalmost-equilibriumtheoriesandmeasurements,which had often been only 100% in nuclear
fission [1.4], boomedto 1000% in deep-inelasticreactions[1.5]. This made sure that manicuring
equilibrium modelswould not help.

But thistoo is not the main reasonfor thetitle. Actually “scission” is intendedto denotethe instant
of rupture.In this report more thanthis instant will be discussedthoughnot the completeprocessof
fission. We shall leave out fission cross-sections,compoundformation and say little about how the
saddleis reached[1.6]. In otherwords, weshall concentrateon theexitchannelandhencebe concerned
with fragmentpropertiesas yield, totalkinetic energy,neutronmultiplicity (chs. 5, 7 and 8, section6.4)
and, to a lesserdegree,gammaemission(section8.5).

1.2. Multichannelfission

Oneof thenew discoveriesis that thereareseveralexit channelsin spontaneousfission or low-energy
inducedfission (chs. 7 and 8). Leaving the compoundstate,the nucleusmaychoosebetweenvarious
pathsto disintegration.Thesepathsarerelatedto but not the sameas the Bohr fissionchannels[1.7]
(section 7.5). The Bohr fission channels are rather metastablestates over the barrier. The term
“channel”, however, suggestsa guidedevolution,and this is exactly what the new channelsare for.

Insteadof one fission barrier— maybedoubly humped— we nowsee that everynuclidehasa system
of them.Also at rupture,insteadof onenuclearshapeseveralof them can bedistinguished.Sincethere
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is, in most cases,only oneway out of the compoundstate,fluctuationsdisregarded,the fission channels
must fork. The new objects in multichannelfission are thus bifurcationpoints (sections7.1 and 8.1).

One may find these channelsby computing the potential energy as a function of the shape
parameters.In this, quantumshell correctionsand advancedsearchingtechniquesare indispensable
(sections9.1, 9.2).

Potential energycomputationsalone are not sufficient, as the connection to the exit channel
observablesis still missing.Randomneckrupture providesthe link (section9.3).

1.3. Randomneck rupture

The main item in randomneckruptureis theprescissionshape.It looks like two headsconnectedby
a thick neck. Neckrupture meansthe neck snapswhen the nucleusstretchesbeyondthe prescission
shape.Randomneckrupturemeansit is not decidedwhere the neckbreaks(ch. 3).

Knowing random neck rupture, one may computethe most important exit channel observables
provided the prescissionshapeis given (ch. 4, section9.3). However, randomneckrupturedoesnot
itself deliver the prescissionshape.Fortunately,with the fission channelcalculationswe can find the
desiredshape(in generalseveralof them),seech. 9, Hencemultichannelcalculationsandrandomneck
rupturesupplementeachother.

The union of multichannelcalculationsand randomneck rupture has solved, amongothers, two
long-standingproblemswith the massdistribution Y(A): The averagemassnumbersnow comeout at
the correctasymmetry,andthe computedvariancesareno longer too small (sections7.2 and7.3). Both
improvementswere possiblesince the propertiesof the scissioningnucleuswere consideredand not
thoseof the fragments(section9.4). For example,the magicnumbersof the fragmentssuggestthat the
averagemassnumber should be 132, whereasnature insists on about 140 for most of the actinides.

1.4. Applications

In all, the predictive power of the theory has been increasedby random neck rupture and
multichannelfission. We can computenow the neutronmultiplicity i(A), meanmassesA~,meantotal
kinetic energiesTKEC, andthe correspondingstandarddeviations°A,c and0’EC for eachexit channelc
separately(section7.1, chs. 4, 6 and9) wherethe accuracyof predictiondecreaseswith the position in
the list. We can evenhaverelative estimatesof the channelprobabilitiesp~(section8.3).

Guided by the theoreticalanalysisexperimentersknow now how to decomposemassdistributions
Y(A,TKE) as they dependnot only on the fragmentmassnumberA, but also on the total kinetic
energy TKE of that particular partition (sections 6.1 and 8.5). This is valuable, of course, for
comparisons.However, this approachis much moreimportant for the reductionof data bases.Instead
of searchingthroughendlessfiles onemaynow obtainthe sameor evenmoreinformationfrom a small
table. Similar progresshasbeenmadefor the neutronmultiplicities i(A,TKE) (section8.5), andafter
sometime suitabledecompositionsfor all the otherexit channelobservableswill be available.

Still anotherapplicationmight befeasible: nuclearfission haslong beenknownas the mostefficient
creatorof chemicalelements.This fact is utilized for numerouspurposes.Unfortunately,for acertain
fissile nuclidethe distributionY(A)of fragmentmasseswas fixed. However,nowit hasbeendiscovered
that eventiny changesin the entrancechannelare enough to reshapethe massdistribution [1.81.In
other words, one may suppresscertainisotopesand promoteothersinstead (section7.5).



U. Brosa et al., Nuclearscission 171

1.5. Historical notes,past andfuture

Multichannel fission and randomneckruptureare the main topicsof this review. As always, some
scrutiny revealsthat the underlyingideaswere announcedlong ago.

Turkevich and Niday [1.9] were probably the first who interpretedthe mass distribution from
thoriumin terms of two fission channels.The first substantialanalysis was madethen by Britt and
co-workers[1.10]who deciphered,in a way that is now recognizedas beingentirely correct,the yield
Y(A,TKE) of actinium. Despite this remarkablesuccess,multichannel fission disappearedalmost
completelyfrom public consciousness.It is probably the merit of Hulet and his colleagues[1.11]that
multichannelfission hassurvivedand prospered.

Fromtheoreticalconsiderations,Pashkevichdiscoveredtwo fission channelsin lead[1.12].His work
was exceptionalat that time sincehe consideredthe shells of the scissioningnucleuswhile othersstill
stuck to the shells of the fragments.

Thefirst descriptionof randomneckruptureandtheideathat it might beusefulfor the predictionof
neutron multiplicities was given by Whetstone[1.13]. Later on, Karamyanet al. [1.14] could not
explain largevariancesin inducedfissionwith conventionaltheories.So theytoo proposedrandomneck
ruptureas a possibleway out anddevelopedthe first quantitativeelementsof the theory.That a certain
instability known from hydrodynamics,the Rayleigh instability, should be significant for nuclear
scission,was recognizedfirst by Griffin and Kan [1.15].

The disadvantageof the presenttheory is its patchworkcharacter.Whatonewould like to do is to
solve the Schrödingerequationfor the multifermion problem.Multichannel fission and randomneck
rupture should thenbe obtainedas mere byproducts.Nevertheless,the physics behindmultichannel
fission and random neck ruptureis elementary.It is hardly conceivablethat better theoriesmake it
disappear.See, for example, in fig. 1.1 pictures from a TDHF calculation. The pictures illustrate
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Fig. 1.1. Time evolution of nuclearscissionaccordingto TDHF [1.16].Shown areContoursof constantdensity in the Y—Zplane for a system
consistingof Z~,,= 184protonswith ~ = 476 nucleonsin total.Thetimes t arenotedin theright lowercornersofeveryinstance.The semilengthsI
of thescissioningcomplex aregiven in the lower left corners.Suspiciousreadersmay measuretheselengthsfor themselves.
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rupturein a multifermion systembut do not exhibit the simplicity of the underlyingphysics.Instead,
the fundamentalsof rupturecan be derivedon a piece of paper(section3.4). To recognizehow close
the resultsof extensivenumericalcalculationsandof simpleanalyticalargumentsagreeonecanuseeq.
(5.1),which is a resultof thesesimple considerations.The equationpurportsthatanucleusscissionsas
soonas its semilengthI becomeslarger than 2.4 times its (hypothetical)compoundradius~ The
hypotheticalcompoundradiusis about9 fm for 238U + 238U. The critical semilengthis hence22 fm, and
indeedfig. 1.1 exhibits ruptureat a semilengthof 22 frn.

Many importantsubjectsof fission researchwill not be touchedon in this report. The readercan
obtain informationon the presentstatusof the subject from [1.17,1.18].

1.6. Suggestedreading

The papercontainsthree key sections,3.1, 6.2 and 7.1, wherethe fundamentalideas are briefly
explained. We put great emphasison experimentalverification, chs. 5, 7 and 8 and section 6.4.
Theoreticalrecipesare specifiedin the chs. 2, 4 and9 andsection6.3. The latterareboring,but hadto
be written to facilitate checkingof the computedresults.

2. What do scissioningnuclei look like?

2.1. Degreesoffreedom

There is no shortagein representationsof nuclearshapes,seefor exampleHasse’scollection [2.1].
Such representationsare suitable for fission if the following conditionsaresatisfied:

(i) A shaperepresentationmust have three essentialdegreesoffreedom: stretchingof the nucleus,
thinning of the neckand deformationto asymmetry.

(ii) A single sphereand two fragmentsshould be amongthe allowedconfigurations.
(iii) The flatnessof the neck must be an independentvariable.

Thefirst two conditionsareclassics.Condition (iii) is moremodern~withouta flat neck,randomneck
rupturecannottake place.

Shaperepresentationsarewritten in cylindrical or sphericalcoordinates.Sphericalcoodinatesarenot
consideredbecausetheycannotcomply with condition(ii). Onehasto usecylindrical coordinatesor an
equivalent,a fact realizedmany yearsago [2.2]. However, most popular representationsof this type
still disregardcondition (iii). For example, in the representation[2.3] in which two spheroidsare
connectedby a hyperbolic neck, a flat neck can be achievedonly for large neck radii or elongated
spheroids.Similar constraintsexistfor a representationbasedon Cassinianovals [1.12]andalsofor the
(h, c) representationmadefamousin the Funny Hills [1.2]. Thus,therewas a needto generalizethese
descriptions.The shaperepresentationto be introducedin section2.4, for example,is an extensionof
the approachin which two spheroidsare connectedby a hyperbolic neck.

There is no doubt that all existing representationspermit similar generalizations.However, com-
parison of the results obtainedwith different representationsis cumbersomeif these results are
displayed as functions of technical parameters.The h and c mentionedabove are such technical
parameters;they havesomerelation to the shapebut generallya complicatedone, which is hard to
translateto other representations.Such translations,however,are unavoidablenot so muchbecause
specialtheoreticiansfavor specialshaperepresentations,but all themorebecausenumericalor physical
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reasonsforcethe useof different representationsfor different tasks.The only way out of this dilemma
is to use shapeparameterswith obviousgeometricmeanings.A suitableset is

1, r, z, c, g , (2.1)

seefig. 2.1. The semilength1 measuresthe elongationof the nucleus;we takethe semilengthinsteadof
the total extensionsincewe want 1 to coincide with the radius rcn when the shapeis a sphere.r is the
radiusof the neck. As long as thereis no neck, r indicatesthe size of the shape’sbelly; again, for the
spherical “compoundnucleus” r agreeswith ~ z gives the position on the neckwherethe neck is
thinnestor wherethe shapeis thickestif the neckdoesnot yet exist.c is the curvatureof the neck,with
positivevalues if a constrictionexistsand negativeonesin the oppositecase.c can bevisualizedas the
inverseof the curvatureradius,cf. fig. 2.1. To be precise,wedefinec as ~ This is not morethan
the multiplication with a constantand hasthe advantageof giving c the samedimensionas all these
parameters,namely length. Finally, s describesthe position of the centroid. Hencez and s areboth
parametersof asymmetry,and they are bothmeasuredrelativeto the geometriccenterof the shape.

In addition to their obvious meaning,the parameters1, r, z, c and s havethe advantageof being
definedfor all shapes.Anotherbenefitof theseparametersis their limitedrange: for all fissionproblems
we are surethat they vary within a hypercubewith edgesbetween—30 fm to +30fm.

The parameters(2.1) haveno meansof expressingaxial asymmetry.In other words, the shape
function hasthe form

P = P( ~‘) Pshape( ~‘; 1, r, z, c, s) . (2.2)

The angle ~ knownfrom cylindrical coordinatesp, ~, ~does not occur.

2.2. GeneralizedLawrenceshapes

Squareeq. (2.2) and write the right-handside as a power expansionof ~. This producesthe
generalizedLawrenceshapes[2.4]:

= (12 - ~2) ~ a~(~- z)~, (2.3)

Fig. 2.1. Visualization of thedegreesof freedomI, r, z, c and s. The surfacedepictedis a specialLawrencianshapeof theclass(2.3) displayedin
thecoordinatesp and ~‘. Non-dimensionalunits areused:lengths are measuredas multiples of ~ Otherwiser~~Icinsteadof 1/c would be the
curvatureradiusof theneck. The picture is takenfrom themovie [2.5].
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valid for —l ~ ~ 1. The leading factor 12 — ~2 providesfor roundedheads.The expressionafterthe
summationsymbol servesto model the particularsof the shape.

The coefficientsa~are examplesof technicalparameters.We replacethem by the geometricalones
(2.1). This is easy since the geometricalparametersare fixed by analyticalexpressions.1 is already
containedexplicitly in (2.3). The neck radiusr is definedby

2 2p(~=z)=r , (2.4)

but simultaneouslywe haveto makesure that the shapeis actuallythinnestor thickestat ~ = z:

dp2(~z)~ (2.5)

The curvaturec comes in via

d2p2(~ z) = , (2.6)
d~ ~

andfor the centerof masss we have

J ~p2(fld~sJ p2(fld~ (2.7)

by definition. Its right-handside can be simplified if volume conservation

J p2(fld~ ~ (2.8)

is kept in mind.
Equations(2.4—2.8) impose five conditions on the Lawrenceshape(2.3). To havethem satisfied

takesfive coefficientsa~or, expresseddifferently, N = 4 is the upperlimit of the sum in (2.3).Due to
the somewhatsophisticatedarrangementof ~in (2.3), conditions (2.4—2.8)can be evaluatedsucces-
sively:

a
0= l

2—z2’ (2.9)

a
1 = l

2—z2’ (2.10)

2cr/r~~+ a
0 + 2a1z

a2— 1
2—z2 ‘

a
3 = [sr~~(15l

4+ 21012z2+ 175z4)+ (r~~— a
01

3)(60l4z+ 14012z3)— a
1(31

9 — 1817z2— 105l5z4)

— a
2(6l

9z+ 417z3+ 70l5z5)]I(9l’V7 — 919z2— 317z4— 3515z6), (2.12)
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—35sr~n+ 7a11
5 — 14a

21
5z+ a

3(3l
7 + 21l5z2) 2 13

a
4= 12l

7z+28l5z3 ( . )

Clumsinessin the relationsbetweenthe geometricaland technicalparametersis typical andoften much
worse thanhere.To keepit aloof from discussionson physicsis almostmandatory.

Looking for changesdependingon the five shape parameters(2.1) means roamingthrough a
five-dimensionalspace.Without any ideawhatthe landscapelooks like, one goesastray.So for a first
orientation,ramblingthrough a subspaceis useful. Oneof our favorite subspaceswas

1, r, z. (2.14)

Equation(2.3) was kept, but N reducedto two. In this caseequations(2.9) and (2.10) remainvalid,
but (2.11) must be replacedby

— ~ — a
0l

3 + a
1l

3z 2 15
a

2 — l~I5+ 1
3z2 ( . )

and equations(2.12—2.13) arecancelled.Moreover, the subspace

1, r, s (2.16)

was frequented.For thesestrolls, the representation(2.3—2.13) was not changedat all; the missing
parametersz andc weredeterminedby minimizationsof the liquid-drop energy(seesection9.1 below).

Both restrictions(2.16) and(2.14) satisfythe conditions(i) and(ii) of section2.1 but violate(iii): a
strongly curvedneck is obtainedfor almost all the shapesnearscission.

2.3. ThefragmentmassnumberA

A look at (2.2), (2.14) and (2.16) showsthat the manyways by which asymmetrycan be expressed
becomeaproblemfor comparisons.The mass numberof the “left-hand-sidefragment”

A(zr)= IrP2(fld~ (2.17)
en —t

unifiesthe asymmetries,and moreoverwe get hold of a variable that can, if p(~‘) modelstwo nascent
fragments,be measureddirectly. Formula(2.17) is usuallyappliedto suchconfigurations.The rupture
position z

1 can vary all over the neck.

2.4. A real flat-neckrepresentation

TheLawrenceshapes(2.3) arestill somewhatdisadvantageousbecausethe curvatureof the neckas
definedin eq. (2.6) is a local property: smallc entailsa small secondderivativeof p(~)only at ~‘ =

the neck may be quite curvy at neighborpositions.A representationwhich guaranteesa globally flat
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neck, is

(r~— ~2)1/2 —r1 ~

2 ( ~—z+l—r1 \p(~,’) r+acI~cosh a —1) ‘1~’~~2’ (2.18)

[r~ —(21—r1 — r2 — fl
2]112 ~ 21— r

1.

This class of shapesis definedfor —r1 � ~� 21 — r1. An exampleis depictedin fig. 2.2. Severalof the
parametersmet in (2.18)arefamiliar: the semilength1, the neckradiusr, the positionzof the “dent”
on the neck,andthe neckcurvaturec. A new parameteris, for example,the extensiona of the neck. In
fact,with alargea onemaykeepall higher derivativessmallandhenceprovidefor a globally fiat neck.
Theradii r1 andr2 of the sphericalheadsarealsonew, as arethe transitionalpoints~ and ‘2 wherethe
three parts of (2.18) join.

Altogether we have nine parametersat our disposal.Five of them can be eliminated by trivial
requirementsfrom geometry:at the transitionalpoints,the shapehasto becontinuousandcontinuous-
ly differentiable:

(2.19)

(2.20)

~ ‘~, (2.21)

(2.22)

p/fm
10’

-21—-r1—-r2 ~L.

/~5 ~

I I I I ~ \~/frn
5 0 ~i 5 10 Z 15 20 ~2 30 35

p/fm

Fig. 2.2. The flat-neckrepresentation(2.18), upperpart, andtheembeddedspheroids(2.26,2.27),lower part.Note the different origin of the
coordinatesp and ~ascomparedto thatin fig. 2.1. This entailsan offset for theposition z by 1 — r1. The shapeshownhere is aprescissionshape
constructedfor a deep-inelasticheavy-ionreactionwherexenonwas fired at bismuth [2.61.Lengthsaremeasuredin femtometersandshouldbe
realistic with an accuracyof 10%.
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are all continuous.And, of course,volume conservationmust be guaranteed:

21—r
1

J p
2(fld~ ~ (2.23)

For a really flat neckwe stipulate

c—~minimum. (2.24)

As can be seenfrom eq. (2.18), c = 0 is generallynot possible.One maynow consider

1, r, z (2.25)

as independentvariables.They are the sameas in (2.14) althoughthe shapeis different.
The price one hasto pay for the real flat neck arethe transcendentalequations(2.19)—(2.23).To

solve themis time consuming.Moreover,the secondandhigherderivativesof p( fi arediscontinuous
at ~ and ‘2~This inducesa lot of precautionsto keepthe numericalprocessesconvergent.

2.5. Theembeddedspheroids

As we havefig. 2.2 directly in view, it seemssensibleto discussanothergeometricalconstruction,
namely, the embeddedspheroid.s.When a nucleusscissions,it decaysinto fragmentson which the
strongsurfacetensionquickly smoothesall the cornersand edges.Thereforewe modelthe newborn
fragmentsas two spheroidsin contact.

Theirmajor axesa
1 and a2 [not to be confusedwith the coefficientsa~of (2.3)] arefixed by the total

length21 andthe actual rupturepoint Zr [Zr is the variable introducedin eq. (2.17)],

a1 = ~(r1+ Zr) , a2 = 1— ~(r1+ Zr) . (2.26)

The minor axesb1 and b2 follow from volume conservation:

Zr 21—r1

2 3(2 2312
= i— J p d~, b2 = ~ J p d~. (2.27)

a2 Zr

Theseformulasarevalid if the coordinateorigin is as shownin fig. 2.2. They thus hold for the shape
parametrization(2.18). Slight modificationsare requiredto make them suitable for the Lawrencian
shapes(2.3).

The embeddedspheroidsareusedto estimatethe repulsionbetweenthe fragmentsandthe energies
of deformationthat the fragmentshaveimmediatelyafter formation.

2.6. Areasofapplication

What can one do with the shapeclassesdefined in the previoussections?For potential energy
calculationsbasedon the liquid-drop model the most primitive class of Lawrencianshapes(2.14) is
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sufficient. For us it was evena majordisappointment[2.7]to seehowinessentialthe dependenceon the
neckcurvaturec is. In addition,in potentialenergycalculationswith shell effectsmanyvalid resultscan
beobtainedwith (2.14) or (2.16).However, thebarriersbecomemorerealisticwith thefive parameters
(2.1), andcertaindetailsof the fissionchannelsalsochangeif morethanthreedegreesof freedomare
takeninto account. However, the relative insensitivity of the potential energieswith respectto neck
curvatureis the reasonfor the successof the primitive shaperepresentations.

One area where the primitive shape representationsfail completely is dynamics. To see the
instabilitiesunderlyingrandomneckrupture, the inclusion of the curvaturec is indispensable.In this
context the representation(2.18) was so useful that numericaldiscomfortswere set asidewhereverit
seemedpossible. Up to the presentwe use (2.18)—(2.24) to calculate measurablequantitiesfrom
theory.

3. Fundamentals of random neck rupture

3.1. Whatyoumustknow to becomea random neckrupturer

Quantitiessuch as the massyield Y(A), the neutronmultiplicity i(A) and the total kinetic energy
TKE(A) areslavesof theprescissionshape.You look at the data andknowthe originatingprescission
shape,without any computation.

It is especiallysimplewith the total kinetic energyTKE. This quantity is an inversemeasureof the
prescissionshape’slength. High kinetic energiesindicatea short prescissionshape,low TKEs a long
one.The ideabehindthis is that the nucleusstretchesslowly until rupture.The prescissionshapeis the
“last halt”. Thenthe rupturetakesplace,andCoulombrepulsionacceleratesthe fragmentswithoutany
hindrance.

Almost as simple is the relationof the prescissionshapeto the variancecr~ofthe massdistribution
Y(A). It too measuresthe prescissionshape’slength,seefigs. 3.laand3.lb. More preciselyoneshould
say: it measuresthe lengthof the neck. Namely,randomneckruptureproducesdifferent fragmentsby
choppingthe neckat differentpositions.The longer the neck,the morepossibilitiesto chop it andthe
larger the variety of fragments.

The averagemassnumberA of Y(A) expressesthe asymmetryof the prescissionshape.We expect
the most frequent rupture at the place where the neck is thinnest. When the prescissionshape is
asymmetric,this placeis shiftedaway from the center.Consequently,mostlyone light andone heavy
fragment are produced, and a double-humpedyield Y(A) is obtained,as shown in fig. 3.ld. For
decreasingasymmetrythe two humpsmergeuntil a single bump remains,comparethe seriesof figs.
3.ld, c and b.

It takesmore intuition to understandthe neutronmultiplicities i(A). To start easy,let us first state
the relations as rules:

(1) A large average neutronmultiplicity i is caused by a longprescissionshape(cf. figs. 3. la and b).
(2) A symmetricprescission shape gives rise to a multiplicity i’(A), which increases steadily with the

fragmentmassnumberA, seefig. 3.lb, whereasan asymmetricprescissionshapecausesasawtooth,fig.
3.ld.
These rules are basedon the embeddedspheroidsintroducedin section2.5 to model the newborn
fragments. Their deformations turn into an excitation, and this excitation is finally releasedby
evaporationof neutrons(that also otherparticlescan be emittedwill be neglectedfor the moment).
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Fig. 3.1. Some important correlations that a prescission shape Fig. 3.2. Random neck rupture and the sawtooth shape of the
mediates.Shown are mass yields Y (dotted lines, right’hand-side neutronmultiplicity i(A). In the central part, (b), the prescission
scales)and neutronmultiplicities i (solid lines, left-hand-sidescales) shapevalid for the spontaneousfission of 252Cf is depicted. More
as functions of fragmentmass numberA. Although the pictureswere precisely,it is approximatelythe standard prescissionshape. Some
madefor generalillustration, theydisplay thecomponentsthatshould embeddedspheroidsare inserted. They are markedby numbers,2
be relevant for the fission of 258Fm. In termsto be explainedin and2’, for example.The 2 and2’ fragmentsareproducedwith a large
sections7.1 and 8.5: part (a) showsasupershortprescissionshapeand probabilitybecausetheneck of theprescissionshapeis thinnestatthe
its products,part (c) thestandardandpart (d) thesuperasymmetrical 2—2’ position. Therefore,in part (a), arrows 2 and 2’ point at the
prescissionshape. The figure appearedfirst in ref. [3.1]. maxima of the yield Y(A). Rupture at 3—3’, in contrast, rarely

happensdue to the increasedthicknessof the neck. It is now most
important to noticethat thesplit at 3—3’ gives rise to fragmentsthat
are aboutequal by mass but very different by deformation.As the
neutronmultiplicity i(A) increaseswith deformation,thedatashown
in part (c) becomeunderstandable.Lines representthe results of
random neck rupture while experimentalmaterial is displayed by
symbols.The figure stemsfrom [3.2] where referencesto the early
experimentalpaperscan also be found.

Since long prescissionshapesmake fragmentswith large deformations,it is now clear that long
prescissionshapesgive rise to moreneutrons,seerule 1 above.The meaningof rule 2 is detailedin fig.
3.2: in an asymmetricprescissionshapefragmentsare embeddedwith about equalmassesbut very
differentdeformations.They generatethe sawtooth.

The objectionagainstthis type of reasoningis that data aregiven, but prescissionshapesmaybe
constructedat will. However, since from oneprescissionshapeat leastthreedifferent observablescan
be derived,the prescissionshapecan be construedas a meansto correlateobservables.The two most
important relationsare:
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(i) Kinetic energies1I~are anticorrelatedwith the varianceso~of the mass distributions Y(A).
(ii) The deviationof A from masssymmetry is correlatedwith the sawtoothof i(A).
Thereare manymore relationsemanatingfrom the picture presented,but most of them are not

specific for randomneckrupture.For example,it follows from randomneckrupturethat high TKE’s
comewith low xv’s andvice versa.Every model that doesnot disregardenergyconservationreproduces
this type of dependence.

In low-energy fission, no exceptionfrom the relations(i) and (ii) is known. In heavy-ion-induced
reactions,relation (ii) is still debated,see section 5.7. However, more convincingthan qualitative
relationsare quantitativecomparisons.To demonstratehow thesecan be madeis the purposeof the
next chapter.However, first the physical foundationsof randomneck rupturewill be discussed.

3.2. Scissionas a sequenceof instabilities

Ordinaryfission needsat leastthreeinstabilities for its evolution:
(i) passing the barriers,
(ii) the shift instability,

(iii) the capillarity instability.
Surmountingthe barrier(s) is the elementof fission,which wasconsideredfrom 1939 on, see[3.3]. Even
today it is sometimesconsideredas the explanationof fission, though it is only the first stepof a
complicatedwalk. Shortly behindthe last barrier the neckstartsto appear.At first it still hasabump in
the middle. Underfurther stretchingthe neck becomesperfectly flat, and after this it will thin in its
centralpart.The curvaturethusdevelopsfrom negativethroughzeroto positivevalues.On a flat neck,
strangulationmay happeneverywhere.One can statethis in a different way: the position of future
constriction, which is at this stage just a tiny dent, canshift on a flat neck as in an unstablemotion
[3.4,2.5]. Finally the capillarity or Rayleigh instability ramps[3.5—3.7].This is the time of constriction.
The shift is stoppedor, in otherwords, the asymmetryis frozen,and the nucleusdisrupts.

Randomneck ruptureis a descriptionthat summarizesthe effects from the shift and the Rayleigh
instabilities. Neck rupture occurs becauseof the Rayleigh instability, while the shift provides for
randomness.It takessomeof Rayleigh’s formulasto calculatea prescissionshapeandideasfrom the
shift instability to set up a suitableformula for the ruptureprobability.

Instabilities are by definition acts of dynamics.Neverthelessonemay learnmuch aboutthem from
the potentialenergyalone. Refer to fig. 3.3. It is a contourplot of the potentialenergyof a fissioning
nucleus.The unstablestretchingbehindthe saddle and the onsetof the capillarity instability can be
inferred from this picture. One just hasto look for those locationswherethe systemstarts to gain
energywhen it stretchesor constricts.

Hereit mustbe clear that the Rayleighinstability is by no meansnew in nuclearphysics.Contour
plots as in fig. 3.3 havebeen madefor decades.For example,the onsetof the Rayleigh instability is
identical with Strutinsky’s critical point [3.9]. But therewere two problemswith earlier approaches.
First, the capillarity instability was not recognizedin that characteristictwist of the potentialenergy.
Thereforeno onerealizedthat this twist is just effectedby surfacetension,Coulombrepulsionplaying
only a subordinatepart. As a consequence,a certain simple scaling relation [equation(3.3) below]
could not be foundandhenceno prescissionshapedefined.The secondshortcomingwas relatedto the
so-calledoverstretching:from the potentialenergyalone one readsonly the onsetof the capillarity
instability. At the onset,the constrictingforce is closeto zero. Becauseof inertia the nucleuscontinues
stretchingand rupturesonly when the constrictingforce becomesstrongenough.
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Fig. 3.3. Unstablestretchingbehinda saddleandonsetof rupturevisualizedin apotentialenergysurface.Thesaddlepointappearsasarotatedx
while the onsetof ruptureis markedby a full circle and arrow.Thiscontourplot displayspure liquid-dropenergiesin theplaneof semilengthI and
neckradius r for symmetricalshapes[3.8]. Lengthsaregiven in units of the radius~ = rrjA~
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0r~~with thezero for the compoundshapeat I = r = ~ The fissility x is definedin equation (4.17).
x = 0.72 belongsapproximatelyto
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The shift instability is completely dominated by inertia and cannot be visualized by picturessuchas
fig. 3.3. But there are means to display it using the dynamical curvature tensor or, for simplification, by
the Gaussiancurvatureof a dynamicalsystem[3.4].

3.3. Theshift instability

The shift instability is elucidatedbestby a movie [2.5]. For a first acquaintancelook at fig. 3.4.
Below one can seean idealizednucleusjust after the shift instability. The nearly invisible denton the
neck, indicatedby the triangles,went to the right. Prior to the shift the trianglessat exactlyover the
opensquare,which marksthe geometricalcenterof the shape.The arrowsinside displaythe velocity

z c dz/dt I m
0.60 ““ 0.30 10.00

0.30 —----/ .——— 0.00 5.00 ‘ F0.04

0.00 ~ ‘I -0.30 0.00 ~ ‘I 0.00
0.00 0.60 1.20 0.00 0.60 ~ 1.20

t = 0.55

Fig. 3.4. The shift instability. This is a single shot from themovie [2.5]. The vertical lines in theupperinsertsindicatetheactualtime, namely
= 0.55 at this instant.All units are dimensionless,basedon the radiusof the sphericaldrop,on its surface energyandits mass.
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field. The point to be noticed is that almost all of the material neededfor stretchingcomesfrom the
heads,while thereis nearly no motion at the center.Hencelarge shiftsof the denttakeplacewithout
sizeable physical mass motion.

In the left upperpart of fig. 3.4z (full line) andc (dotted) are shown as functions of time t. The shift
instability is characterizedby the steepriseof the full line. This is a largechangeof the dent’slocationz
within a short time. Wesee this happens when the curvature c movesthroughzero. In otherwords, the
shift instability takes place when the neck is perfectly flat. The later increase of z results only from
stretching. It is the same as the motion of a spot on an elastic when the elastic is strained.

The curveson the upper right-handside are graphsof velocity dzldt (full line) and of inertia m
(dotted line) as functions of time. dzldt contains about the same information as z: the steeprise is
replacedby a sharpspike.The spikemarksthe shift instability. At the front of the spike the inertia,
shownby the dotted line, goesto zero. This is anotherway of statingthat the shift instability can take
placebecauseit needsnearly no physical mass motion. Later on during fission, the dent deepens.Its
shift now necessitateslargephysicalmassmotion.Hencethe inertial parameterm alsoincreasesso that
the dentis effectively frozen in.

Two additional pieces of information can be drawn from fig 3.4: first, the shift instability happens
beforesqueezingand, second,the geometrical center and centroid (the two squares) stay close to each
other. The first item is in contradictionwith the scission-pointmodel [1.4], in which it is assumedthat
the mass fluctuations takeplace after the squeezing.The secondpoint illustratesan inadequacyof an
often used dynamicalmodel[2.3]. In this model massfluctuationsareeffectedby transportthrough a
comparativelythin neck. But sucha redistributionof massesseparatesthe geometricalcenterfrom the
center of mass. Figure 3.4 demonstrates that such a mechanism does not prevail.

The computationsthat gaverise to fig. 3.4 were basedon Eulerianhydrodynamicswith five degrees
of freedom: the semilength I, the neck radius r, the position z of the dent, the curvature c and the
center of mass s, asdefinedin fig. 2.1. Underlying this was the shape representation (2.3). The essential
novelty was the way in which the curvaturec was considered.The inertial parametersmkf(l, r, z, c, s),
k, j = 1,. . . , 5 were computedusing a procedureinspired by Hasseet al. [3.10]but with improved
accuracy [3.11]. Only surface tension was included in the potential energyU(l, r, z, c, s). Coulomb
effects were disregarded as being inconsequential for the problem at hand.

The completeequationsof motion, as usedfor the trajectoriesshownin fig. 3.4, are

(2aa)a (3.1)

The dynamical variables {I, r, z, c,s} are written here as {z~~i= 1, . . . , 5}. Dots indicate time
derivatives.The inertial tensor is not diagonal and its elements depend on the dynamical variables. This
is why the eqs. (3.1) look muchmore complicatedthanNewton’sequationof motion for a masspoint.
Neverthelessone may understandthe shift instability from an extremelyreducedexpression,namely

FIm(c). (3.2)

Here z againmeansthelocation of the denton the neck,F comprises the forces described either by the
potential energy or by the inertial terms on the right-handside of eq. (3.1). m(c) is the inertial
parameterdisplayedin fig. 3.4; it is m33 in termsof eq. (3.1). The dependenceon the curvaturec is
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stressed because it is by far the most drastic one. Equation (3.2) says: to produce a large acceleration in
z, thereis no needfor largeforcesF. A small inertial parameterm(c) doesthe same.This is alsothe
messageof fig. 3.4.

Summarizingonemaysay thatthe shift instability arisesbecausefor fissiona nucleushasto change
from a spheroidalto a necked-inconfiguration. Trivially, on this transitionthe neck mustbecomeflat
or, in equivalentterms, its curvaturegoesto zero. If the curvatureis zero,no inertia stopsthe shift of
the nascentdent. This effectively amplifies small fluctuationsand generatesthe largemassfluctuations
that previoustheoriesfailed to explain.

3.4. Thecapillarity or Rayleigh instability

Thecapillarity instability accomplisheswhat the shift instability prepares;it takesthe dentwhereit is
and deepensit until two fragmentsappear.A characteristicof the Rayleighinstability is

21=llr, (3.3)

which relatesthe total length21 of the prescissionshapewith its neckradiusr [3.2,3.8,3.12, 3.13]. The
relationis so important that it becamethe trademarkof randomneck rupture.In principle,equation
(3.3) is nothingotherthana slightly modifiedrelation first derivedby Rayleigh.It takesthreestepsto
find the coefficient 11:

(i) look for the onsetof the capillarity instability,
(ii) take overstretchinginto account,

(iii) considerthe finitenessof the fissioning nucleus.
As will be seenfrom the derivation,onemust not claim that the magic11 is moreaccuratethanby

11%. But within such limits it is a quite universallyusableconstant.In particular, it doesnot depend
significantly on the Coulombrepulsion[3.8,3.9]. Moreover,it is not perceptiblychangedby rotation
[3.14],and alsoneitherviscosity nor compressibilitynor surfacediffusenessseemto play a greatrole,
seesection3.5. Only nuclearshell effectscan modify eq. (3.3) significantly [3.2,3.15], seesection9.3.

Now to the discussionof step(i). Rayleighstudiedan infinite cylinder on which a sinusoidalwaveis
imposed[3.7]. Hence the radiusp of the cylinder can be written as

p(fl = r(e) — r cos(i~~~Il). (3.4)

~represents,as in chapter2, the coordinatealong the axis of the cylinder. Equation(3.4) may be
interpreted as the representation of a shapesimilar to thosediscussedin chapter2. e is the degreeof
freedomhere;increasingr indicatesrupture.We expecta dependenceon time like

fir (3.5)

Instability takesplaceif the growth time T is real andpositive.The othersymbolsin (3.4) werechosen
to conform with other sections of this report: r, in particular,will be identified with the radiusof the
neck and 1 with the semilengthof the scissioningshape.An infinite jet has, of course,no length.
Therefore Rayleigh’s papersonly contain the wavelength A. However, the replacementA = 21 is
obvious.
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In eq. (3.4) onemust keepin mind that r depends on r. This is unavoidablesincethe volume

~f p2(~)d~=2~lr2(r=0) (3.6)

must beconserved.Although this remarkseemstrivial, it is importantfor understandingthe mechanism
of the capillarity instability: every instability needstwo forcesthat balanceeachotherat its onset.For
passingthe barrier, see (i) in section3.2, thisis Coulombrepulsionactingagainstsurfacetension.But
in the capillarity instability both forcescome from surfacetensionalone. When one disregardseq.
(3.6), one of theseforces is lost.

The two forces that constitutethe capillarity instability are these:a sinusoidal deformationof the
surfaceenlargesits areaandthereforecosts energy.The increaseof energyis all thelarger, the smaller
the wavelength;morepreciselyit is proportionalto 12. On the otherhand,the surfacedeformationis
necessarilyaccompaniedby a reduction of the mean radius since otherwise volume cannot be
conserved.This reductionis equivalentto savingsurfaceenergyandis independentof the wavelength.
Therefore,for short wavelengthsthe increaseof surfaceenergyby deformationwill dominate,leading
to stability, while for large lengthsthe decreasedue to volume conservationdominates,leading to
instability. Since both effects are proportionalto the surfacetension,the surfacetensioncoefficient
cancelsso that the borderof stability is determinedpurely by geometry.

Let us makethis argumentquantitative.First calculate the potentialenergy

U(r) = 2~y~f p[l + (dpId~)2]v2d~, (3.7)

wherey
0 0.9 MeV fm

2 is the nuclearsurfacetension.Neglectingall termsof third andhigherorder in
e produces

U(r) 4~y
0r1 + ~

2~y
0~ [H2— i]. (3.8)

The factor after r2!2 is the one that matters. It is customaryto denoteit as the stiffness

C = 2~y
0~[H2_i]. (3.9)

The stiffnesstakesa negativesignif irr < I. With thisconditionthe jet gainsenergywhen aconstriction
starts to develop.

2l—’2irr (3.10)

thusmarksthe onsetof instability.
Justbehindthe onset,the instability-creatingforce is still very small. So it takesmuchtoo long until

a sizeablesqueezingis reached.In step(ii), therefore,the dynamicsmustbe regarded.The simplest
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equationof motion is

ME=—Ce. (3.11)

The stiffness C is given by (3.9). Finding the inertial parameterM requires the solution of a
hydrodynamicalboundaryvalueproblem.

To this endonedeterminesthe velocity potential~(p, fl from Laplace’sequationas a productof a
modified Besselfunction I0(irpll) [3.16]with a cosine cos(7T~Il),calculatesfrom it the velocity field
v= — Vc1,fixes the still unknownmultiplicative constantso that themotion at the surfaceconformswith
eq. (3.4), namely

~=—v~=écos~, (3.12)

and evaluatesthe kinetic energyaccordingto

~ J V~2dV_r_~J ~v.dA~_1TporJ~vpd~. (3.13)
(piece of jet) (surface) —1

Herep0 denotesthe massdensityof nuclearmatter; in combinationwith the nuclearunit radiusr0 we
have

p0r~ 25 x 1046 MeVfm
2 ~2

The inertial parameteris obtainedfrom the kinetic energyby splitting off the factor of ~2/2:

2 1
0(rrrll)

M2irp0r I (1Tr/l)I~(1TrIl) (3.14)
wherethe prime indicatesdifferentiationwith respectto the argument.

The growth time of the instability follows from eq. (3.11) in the most elementarymanner

T = (—M/C)”
2. (3.15)

Considerthis expressionas a function of 1: beyondthe onsetof instability, the stiffness(3.9) becomes
negative and absolutely larger. Therefore, to reduce the growth time, it might seem favorable to
increaseI over all bounds.But atthe sametime the inertia (3.14)decreases.In otherwords,wavesthat
aretoo long arealsonot favorablesincemore andmoremasshasto move. A simplediscussionof the
function (3.15) revealsthat it hasa minimumat

21= 1.435 X2ITr=9r. (3.16)

Hence overstretchingmakesthe droplet 1.435 timeslonger thanwhat one got for the onset.
After the minimum is fixed, one mayuseeq. (3.15) andthe constantsgiven aboveto estimatethe
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rupturetime:

—22 3 1/2T/10 s~[1.5(rIfm) ] . (3.17)

Generallytimes shorterthan 1021 s are found.
Finally, in step (iii), finitenesscorrectionshaveto beestablished.In the simplestway onecan do this

by addingtwo lids at ~,‘= —I and ~= 1 to the surfacedefinedin (3.4). The potentialenergy(3.7) now
reads

U(r) = 2~y~f p[l + (dp/d~)2]~2d~+ 2~y
0[r(e)+ r]

2 (3.18)

The stiffness(3.9) is modified accordingly,

C2~y
0~[(~)+~-i]. (3.19)

The onsetis obtainedby equatingthe expressionin bracketsto zero. This yields
2l’1.172X21rr=7.4r, (3.20)

which is to be comparedwith eq. (3.10).
The inertial parameter(3.14) suffersno modification from finiteness,as canbe seenfrom the middle

expressionin eq. (3.13): at the lids, the velocity v is perpendicularto the vectorial surfaceelementdA.
Neitheroverstretchingnor finitenesschangesthe value of 21/r valid for the infinite jet at the onset

much. Thereforeone may multiply the factorsin (3.16) and (3.20) to obtain the changedue to both
perturbationstogether.It amountsto 1.435x 1.172X ~ 11, the numberwe proclaimedin eq. (3.3),

3.5. The Rayleigh instability under moregeneralcircumstances

Rayleigh’s criterion experiencesonly slight modificationsif morecomplexity is takeninto account.
For instance,if non-axisymmetricconstrictionsare admitted [multiply the last term in (3.4) by

cos mw], the stiffness (3.9) becomes

C= (1 + ~om)~yo [()2 + m2 — i]. (3.21)

It can change sign only if m = 0. Thus we conclude that there is no capillarity instability for
non-axisymmetricmodes.

Friction expressedby the kinematic viscosity v
0 in the Navier—Stokesequationleavesthe rangeof

instability unchanged.Its main effect is to slackenthe growth and to shift the most unstablemode
towardssmallervalues of i-rr/l. The lowest ordercorrectionsin v~read[3.17]

t.’0’r
2 1 2 2 m2Im(Trr/I) (irrII)I,~(irr/I) 1

r(t’
0) = T + —~ 12[m + (‘n’r/l) — (~r/I)I,~(i~rIl)— 1m(7T?’il) ~ (3.22)
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and

/ \1/2irr irr iPoi
—i- (va) = —i-- — O.811v01\_) ; (3.23)

irr/l andT havethe valuesgiven in eqs. (3.16) and(3.17), respectively.Whenwe takea tradablevalue
for viscosity m 6 x 1023 MeV fm

3 s [3.18], the kinematic viscosity is about~ = 1021 fm2 ~
so that weendup with a reductionof 7rrll of about —15%.This is not small, but we shall seethat it is
partly compensatedby surfacediffuseness.

The compressibility ‘c alters the region of instability much less. The smaller inertia hurries the
growth,andthe mostunstablemodeis shiftedto smallervaluesof ITril. The lowestordercorrectionsin
powersof K

0 are [3.19]

K0p0T
2 7 j’m(~TTil) ‘\‘ I,~(i~r/l)

r(K
0)=T+ 4r ~(1TrIl)I,~,(7rr/l)) Im(~T11) (3.24)

and

~ (i~)= ~ 0.052 ~ (3.25)
1 1 r

With r = 3 fm and Blaizot’s value for i~ [3.20], K0-y0Ir is about 0.1 and the shift of ITril is lessthan1%.
Evensmaller is the changeof the growth time.

The effect of a finite surface diffuseness (size a), was studiedusing the Krappe—Nixpotential [3.21]

U —2y~t3i/i(a) , 9!I(a) = ~T~TJd3rd3r’ exp(—Ir-—r’~/a)‘ (3.26)

where the integrationsextend over a piece of the cylinder with length 21. In the limit a—*0 the
conventionalsurfaceenergyU = x surfaceis recovered.The stiffnessis found to be

C=(1+~0m)1T’yo~ {(~)
2+m2_1

9 /aY1(i~r\~ 4m2—1 Ifirr\2 4m2—91 15111 ffa\4\
— — ~—) 1~-7-) + 2 R~)+ 8 ] + + O~—)). (3.27)

For the onset we find

rrr irr /3a\2 If a\4\
-(a)—T+~_) +O~—)), (3.28)

hencein contrastto (3.23) a shift to larger valuesof irrll. With a realistic value for the surface
diffusenesswe haveaIr =0.65/3=0.22. This increasesITril at the onset[cf. eq. (3.10)] by +11%.

Résumé:For the Rayleigh instability in nuclear matter we can forget about non-axisymmetric
disturbancesandcompressibility.The viscosity anddiffusenessare at the limit of beingsignificant, but
their effectson the lengthscalesalmost canceleachother.
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4. Formulas from random neck rupture for applications

4.1. Unit radius and surfacetension

We haveto professnow how the prescissionshapeis actuallycalculated,and how one mayobtain
from the prescissionshapemassdistributions,the total kinetic energiesand neutronmultiplicities.

For thesecalculatiohs,two nuclearconstantswill be necessary,namelythe radiusunit

r0=1.lSfm (4.1)

and the surfacet~nsioncoefficient

y0 =0.9517[1 — 1.7828(N )] MeVfm~. (4.2)

N~0,Zen and Ac,, are the neutron,chargeand massnumbersof the compoundnucleus.
The unit radius(4.1) is a chargeradius, rathera small value. It was takento facilitate accurate

computation of the Coulomb repulsionbetween the newborn fragments(section 4.4 below). The
formula (4.2) for the surfacetensionwas chosenbecauseit is one of the most familiar expressions
[4.1~4.2]. It will be usedfor the ruptureprobability (section4.3) for which we havein any caseonly an
approximateformula.For the precisecalculationof bindingenergies(4.1) and(4.2) do not fit together.
We shall be concernedabout this in sections4.5, 9.1 and 9.3.

4.2. Theprescissionshape

Let us return to the flat-neck representationintroduced in section 2.4. From the free shape
parameters1, r andz (2.25)we can eliminatethe neckradiusr with Rayleigh’srelation(3.3).Next we
replacethe location z of the dent by the fragmentmassnumberA as explainedin section2.3.

To fix the remaining degreesof freedomA and I, two strategiesexist. Either we find them from
experimentaldata, associatingwith A the measuredaveragemass numberA and with I the average
total kinetic energyTKE, cf. sections4.3 and 4.4. Then we obtain the varianceo’~of the mass
distributionandthe neutronmultiplicity v(A) as results.In somecasesto be discussedin sections5.3 to
5.7 it is sensibleto put o~in and to extractTKE from randomneck rupture.

Otherwise,we find A andI by microscopiccalculationsas describedin ch. 9. Detailsrelevantfor the
presentcontextare intimated in section9.3.

The equations(2.19—2.24)defining the flat-neck shape(2.18) aremaliciouslynon-linear.Especially
bad is the dependenceon the curvaturec. An initial value for c can be estimatedfrom a parabola
through the points(~,p(~1)),(z + 1— r1, r) and(~2~p(~2)),seefig. 2.2. But ~ and ‘2 area priori not
known. Therefore we substitute thesepoints by the approximations(0, R1), (z, r) and (21 — R1 —

R2,R2). R1 andR2 are replacements for r1 and r2, which are defined by

R1 = r0A~
3, R

2 = r0(A~~— A)~
3, (4.3)

with A andAen — A as the expectedmassnumbersof the fragments.There is aleft-handsideparabola
with vertex at (z,r), through (0, R

1) and with curvaturec’. Its equationis R1 — r = (c’12)z
2. The
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right-handside parabolagives rise to the equation

R2 — r = (c”12)(2l — R1 — R2 — Z)
2.

Taking the roots of theseequations,addingthem andestimatingc c’ c” gives

R
1 + R2 — 2r + 2[(R1 — r)(R2— r)]V

2

c = 2crej (21— R
1 — R2)

2 (4.4)

if crc! = 1. Of course,a paraboladoesnot representa flat neck. Hence crel< 1 is necessary.We found
that crc! valuesfrom a broadrange

0.03 � c~
1~ 0.3 (4.5)

give suitablestarting values [3.12].
Anotherdifficulty arisesin applicationsto heavy-ionreactions.Heretheradii R~andRTof projectile

andtarget areknown. Onewantsto find theprescissionshapeas a function of theseentrance-channel
variables.To explorethis, the “neck contributionpolicies”

(4.6)

with

(4.7)

areuseful. Theymeanthat the shareof massfrom the neck,which a fragmentreceives,is proportional
to the projectile’s radius (iij = 1), to its surface(p. = 2) or to its volume (p. = 3). Fortunately,the
resultsdo not dependsignificantlyon the choice [3.13].Seesection5.3 for a discussionof the physics.

One fixes now crei = 0.1, say, enters 1 and A as specific for the physicalproblemand solves the
non-linearsystemof eqs. (2.19—2.24) and (3.3), replacingA by Zr = z using (2.17). If A hasnot the
meaningof the averagemassnumberof the fragmentsbut ratherof the massnumberof the projectile,
one disposesof (2.17) and takes(4.6) instead.This definesthe prescissionshape(2.18).

4.3. Theyield Y(A)

Without fluctuations, the neck would always rupture at the sameposition, namely at Z. With
fluctuations, amplified by the shift instability as explainedin section3.3, a slightly different shapeis
generatedso that the neckcan breakelsewhere.We needthe probability that the neckrupturesatan
arbitraryposition Zr• For this one should computethe potentialenergyE(Zr) of the slightly modified
shapeandcompareit with the potentialenergyE(Z) of the mostprobableshape[3.8]. To simplify this,
we replacethe differenceE(Zr) — E(Z) by Ecut(Zr) — E~~5(Z)whereEcut(Zr) := 21rypp

2(Z~)denotesthe
energyto be spentfor a cutof the mostprobableshapeat thepositionZr~Note that we do not haveto
cut; this is accomplishedby the capillarity instability. E~~

5was introduced only for computational
convenience.
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Henceour ansatzfor the ruptureprobability is the Boltzmannfactor

W(A) exp {—2~ry0[p
2(Z~)— p2(z)]IT) . (4.8)

The fragmentmassnumberA can be computedfrom the rupturepositionZr accordingto (2.17). T is
the temperatureof the prescissionshape.For applicationsin spontaneousfission we estimateT from
the excitationenergyE~which the nucleusgainsas it slidesdown to scission(seesections6.2 and 8.2
for details). For applicationsto inducedfission or deep-inelasticreactionsenergiesbrought in via the
entrancechannelareduly takeninto account.The theoreticalyield to becomparedwith the measured
onefinally follows from

Y(A) = W(A) + W(ACS— A). (4.9)

4.4. The total kinetic energyTKE(A)

The prescissionshape decays into fragments,which are modelled by the embeddedspheroids
introducedin section2.5. The energyV~

0~+ Vnuc of repulsionbetweenthe newbornfragmentsconsists
of a Coulomb anda nuclearpart.

The Coulombpart is calculatedaccordingto

= e~Z(Z~— Z) S(x1,x2), (4.10)

wheree~ 1.44MeV fm is the squareof the elementarycharge.The chargenumbersZ andZen — Z of
the fragmentsare calculatedfrom the massnumbersA and Acn — A by a searchfor the minimum
potentialenergyof the postscissionconfiguration.They can alsobe obtained,with sufficient accuracy,
from the assumptionthat the chargedensity is constanteverywherein the scissioningnucleus.The
factor S(x1,x2) containsthe correctiondue to the spheroidaldeformations.It is calculatedaccordingto
[4.3],

,~, ‘c~ 3 3 (2m + 2n)! 2m 2n

(2m+1)(2m+3) (2n+1)(2n+3) 2m!2n! x1 x2 . (4.11)

The quantitiesx~are relatedto the eccentricitiese~of the fragmentsby

~ ~~[i_(—~)]. (4.12)

The semiaxes a, and b, are defined in (2.26) and (2.27), respectively.The expansion(4.11) is
numerically more convenientthanthe closedform [4.4].

The nuclearinteraction energy~ betweenthe nascentfragmentsis evaluatedusing a proximity
formula

Vnuc=4~Yo~(0) b~b~2’ (4.13)
a1 2+a2
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The b~Ia1arethe curvatureradii at the tips of the spheroids,andçb(0) = —1.7817fm is the valueof the
proximity potentialfunction [4.5] for zero distancebetweenthe surfaces.

To obtain, at last, a measurableaveragetotal kinetic energy,one uses

TKE(A) = V~0~+ V1~+ K5. (4.14)

Our results(seesections5.2, 7.2 and7.3) areconsistentwith theassumptionthat theprescissionkinetic
energyK0 is of the order of 10MeV; it seemssmaller in low-energyfission, but might be somewhat
larger in caseswhere fission must be enforcedby high excitation.Therefore,eqs. (4.10) and (4.13)
suffice to find TKE(A). Averagesover massnumbersareobtainedby summingwith the weight (4.8).

4.5. The neutronmultiplicity i(A)

The availableenergyin the newbornfragmentsis

E*(A) = Edef(A)+ E~’AIAcn. (4.15)

Edef(A) denotesthe deformationenergyof the fragmentwith massnumberA, andthe last term in eq.
(4.15) is the shareof the thermalenergythat the fragmentreceivesaccordingto equipartition.

The prescissionexcitationenergyE~is the samethat entersthe prescissiontemperatureT. Seethe
remarksthat follow eq. (4.8).

To establishthe function Edef(A), one goesbackto the embeddedspheroids(section2.5) andhas
henceto know the potentialenergyof aspheroidallydeformedfragment:

Edef(S) = E:~(A){arcsin:+s(1-_E
2)U2— 1 + 2[ (1 2s ~ — i]} . (4.16)

The fissility x is definedby

x = E~u(A)I2E:~(A), (4.17)

and the eccentricity e was introducedin eq. (4.12). E~(A)and E~’~(A)denotethe surface and
Coulomb energiesof a spherical nucleus. For their calculation we have strictly adheredto the
prescriptionsgiven in [4.1,4.2], in particularto the much too large radiusconstantr

0 = 1.2249fm.
As we now know the excitationenergyE*(A) of a newbornfragment,we can calculatethe neutron

multiplicities ~‘(A) from the implicit equation

i/(A)

E*(A) = (S~+ n,,) + E7 . (4.18)

The separationenergyS,, of the neutronsmaybetakenfrom somemassformula, for example[4.1,4.2],
or from atomic mass tables [4.6]. The averagekinetic energy ii,, of the neutronsis ~ times the
temperatureof thefragment,which in turn can becalculatedfrom the excitationenergy(4.15). Finally,
the residualenergyE~that the -y-rays carry off is abouthalf the separationenergySO(A)+ 1 of the first
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non-evaporatedneutron. For most purposes

i(A) = E*(A)/MeV (4.19)
is good enough.

It mustbe stressedthatthe last two equationsarenot valid in high energyfission whereexcitationis
sufficient for the evaporationof chargedparticles.Thereonemustuseevaporationcodesandcompare
the excitationenergies(4.15) ratherthanneutronmultiplicities.

5. Evidencefor random neck rupture

5.1. Ruptureand randomness

The instabilitiesmentionedin section3.2 areall basedon continuummechanics.It is not clearfrom
the beginningthat thesemechanismsalsoapplyto quantumobjectssuchas nuclei.But thereis evidence
for the shift and capillarity instabilities in nuclearfission. To recall, the capillarity instability creates
rupture,while randomnessis activatedby the shift instability. Thoughit is not possibleto isolate the
effects from thesetwo mechanismsperfectly,one maygroupcertainexperimentalresultsaspertaining
moreto oneinstability than to the other. Thus the datapresentedin sections5.2 and 5.3 mainly reflect
the mererupture,whereasthosein the sections5.4, 5.5, 5.6 and5.7 correspondratherto randomness.

5.2. The extendedsystematicsof the total kinetic energy

Averagingover the massnumbersA makesfrom the function TKE(A) anumber,the averagetotal
kinetic energyTKE. One of the greatachievementsof nuclearfission researchis Viola’s systematics
[5.1], namely TKE cc Z~0IA~

3for nearly all the knowncompoundnuclei. At first this scalingseemsto
be trivial, but at a secondview it turns out to be surprising.

Namely the only seriouscontributorto TKE is the Coulomb energy(4.10), and in V~ouonly the
factor Z(ZC~— Z) Ii varies significantly. Z(Zcn— Z) averaged,on the other hand, is proportional to
~ Yet it is odd that the distance1 goes just as A~3and does not dependon Zcn~Barriers, for
example,dependcrucially on the charge,andthereforeone should expectthat the scissioningshapes
just before accelerationalso look different for different total charges.

Equation(3.3), thatis the Rayleigh instability, solvesthis problem. In geometricalterms,eq. (3.3)
conveys that all the linear dimensions of the prescission shape scale with A~3.Approximate the
prescissionshapeby a cylinder.We then haveby volume conservation2i~r2lCC Ac,, andbecauseof (3.3)
1ccA~3and r cc A~3.The reasonfor the simple scalingis, of course,that the capillarity instability is
conditionedexclusivelyby surfacetension,as pointedout in section3.4.

One may derive morethanproportionality. The argumentdiscussedin the previousparagraphfor
the finite cylinder yields lIr~

0= 2.7. Realistic shapescan store a part of their mass in the heads.
Thereforeboth neckradiusandlengtharesomewhatsmallerthan for thecylindrical case.Fromfig. 2.2
one can seethat

l=2.4r~0. (5.1)
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If symmetricscissionis presumed,wemaycomputethe semiaxesof the embeddedspheroidsby (2.26)
and (2.27), find the x, and e, by (4.12), andhavethenfrom (4.10)

1.44Z~nS(0.42,0.42)V~0~IMeV= 4 X 2.4r0A~
3 (5.2)

for the Coulombrepulsionand from (4.13)

VnucIMeV=4lTy
0çb(0)x 2.4

2r
0A~

3 (5.3)

for the nuclearattraction.With r
0 from (4.1), Yo from (4.2),S(0.42,0.42)from (4.11) and 4(0) after

(4.13) we can add (5.2) and (5.3) accordingto (4.14) and find

TKEIMeV= 0.14Z~~IA~
3— 4A~3. (5.4)

Since,crudely,Zencc A the dependenceof the secondterm on massis weak in comparisonwith that
of the first. Therefore,we used

TKEIMeV= 0.14Z~~IA~3— 30, (5.5)

which is accuratefor heavynuclei (250< Ac,, ~ 476) [3.13].For lighter nuclei,deviationsshowup, see
fig. 5.1. There it is perceptiblethat the nuclearattractiondecreaseswith decreasingmass,as predicted
by eq. (5.4).However, the important featurein (5.4) and(5.5) is the minussign for the last term.This

600 Tk~min/MeV

~:~ 0.14Z~n/~~~° ~

~ ~‘~‘~IIiI

0 1000 2000 3000 4000
Fig. 5.1. Generalizedsystematicsof totalkinetic energy.A similar graphwaspresentedfirst in [3.13].The thick line displaysthetheoreticalresult
(5.4), which is not a purefunction of Z~,/A~’.The missingdependencein the lasttermwastaken from the valleyof a-stability. Theterm—4A~3
differs from —30 sizeablyonly for Z~,IA~3< 1000. Therefore eq. (5.5)isalsowell representedby the thick line. The brokenline is from Viola’s
p~~~eeringwork [5.1]. Total kinetic energiesaredenotedhereby TKEm

1n to comply with the requirementsfrom d~E,,.,~ne!asticcollisions (DIC).
TKEm~is the smallesttotal kinetic energymeasuredin deep-inelasticreactions,while it coincideswith the usualTKE in_fission. In DIC, very
asymmetricfragmentpairscan be produced.Onehasto multiply the measuredvalueof TKEmI by Z~,/[4Z(Z — Z)l, if Z denotestheaverage
chargenumberofthe lighterfragments,beforeit isenteredinto this graph.This is to correct for thedifferentCoulombrepulsionof thetwo unequal
chargesinsteadof thesymmetricscissionpresumedin thederivationof eq. (5.4).
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meansthat nuclear forcescausean attraction. The sign is thereforenot free for disposition. In fact,
recentevaluations[5.2] of fission data showthat Viola’s original positive constant+22.2 is too large.

Evidencefor scalinglaws is usuallyconsideredvalid only if the scalingparametersvary over at least
one order of magnitude. Even today this cannot be attained from fission data alone. But when
deep-inelasticdata are included,the rangeis explodedby a factorof three,seefig. 5.1. The evidence
for the random neck rupture result (5.4) is all the more convincing as it reproducesnot only the
exponentsbut also the absolutevalues.

In eqs. (5.4) and(5.5) massfluctuationsare not takeninto account.But one can do this with the
random-neck-ruptureprogramdescribedin ch. 4. To this end one takesthe averagemass A from
experimentand enters according to eq. (5.1) 1/fm = 2.4r0A~

3and A = A as first estimates.The
programthen yields a predictiono~’which is usuallycloseto the experimentalvalueo~.To increase
perfection, 1 is modified until the primed quantity coincideswith the bare one. Such “individual”
predictionsof TKE arepresentedin tables5.1 and 5.2.

Table 5.1

Total kinetic energiesfrom theory(IKE’) and experiment(TKE~)for common fission. The first column
describesthereactionby which fission was induced.Consider,for example,thefirst reaction:protonswith
1000 MeV kinetic energyin the laboratorywere anickeltarget;then,on theaverage,threeprotonsandsix
neutronsescapedbefore an iron nucleusfissioned. The variancescr~of themass distributionscome from
the measurements.They were reproducedby random neck rupture and served as a basis for the
computationof (TKE’), as explainedin section5.2. The question marks in the fourth and fifth lines
indicatethat thesevalues had to be estimated.However, even a mistakeby 50% would not changethe
(TKE1) by more than10 MeV. For 258Fm(sf)only the so-calledhigh energyor supershortcomponentwas
takeninto account,ef. section7.2. Someerror estimatesof theexperimentaldata,whicharegivenwith the
customary ± symbols, should convey an idea of the accuracy of such measurements.Due to the
simplifications and inaccuraciesdiscussedin sections3.5, 4.2 and 4.4, predictionsmade by randomneck

rupture cannotbe betterthan5 MeV

Reaction IKE (MeV) TKE~(MeV) o-~ References

p(l000MeV) + 58Ni—~3p + 6n + ‘°Fe 9 34±4 100 [5.3]
p(600MeV) + ‘°7Ag—*3p + 6n + 99Rh 40 65.2±2.5 200 [5.4]
p(600MeV) + “9La—+ 3p + 8n + ‘29Cs 54 88.6±4.9 550 [5.41
‘6o(1fuMeV) + ‘41Pr—5157140 92 115 130(o) [51312]

‘2C(125MeV) + 159Tb—6‘71Lu 103 121 130(?) [5.1,3.12]

‘2C(120MeV) + 174Yb—6 1860s 115 124 199 [5.5, 3.12]

‘2C(136MeV) + ‘74Yb—÷1860s 115 124 211
‘2C(151MeV) + 174Yb—+ t86O~ 115 128 215
12C(165MeV) + ‘74Yb—9 1860s 114 127±5 235±14

36Ar(205MeV) + ‘69Tm—6 n + 204Fr 144 151 ±8 350 [5.6]
160(93MeV) + 19205_6208Po 141.4 147.1 135 [5.7,3.12]
160(105MeV) + I92O~~208Po 140.9 147.0 154
160(106MeV) + ‘920s—6 218Po 140.6 144.4 161
160(119MeV) + 1920s.6208Po 140.2 146.8 180

a(40MeV) + 209Bi-+213At 144 146 94 [5.5,3.12]
a(6OMeV)+200Bi—62°At 144 147 135
a(65MeV) + 209Bi—~213At 144 150 131
a(8OMeV)+209Bi—+213At 144 148 152
a(100MeV)+ 206Bi—6 213At 144 150 159
a(12OMeV)+209Bi—o213At 145 152±4 153±7

252Cf (sf) 186 186 ±1 43 [5.8,3.21
258Fm (sf) 236 232 14 [1.11,5.9]
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Table 5.2
Total kinetic energiesfrom theory(IKE’) andexperiment(IKE’) for deep-inelasticreactions.The table
is organizedastable5.1. Specialfeaturesareas follows: thesuperscriptsZ in thefourthcolumn indicate
thatonly chargevariancescr~weremeasured.They wereconvertedinto massvariancesaccordingto eq.
(5.6). Anotherpeculiarity is markedby theasterisks.Namely, the experimentalistswho measuredthe
reaction

92Mo + ‘2Mo introduceda novel IKE’ quantity [1.5].It arisesfrom ordinary TKE by removing
the Z(Z,, — Z) dependencethat occursin the Coulombrepulsion(4.10). The theoreticalquantity was

computedwith thecorrespondingmodifications

Reaction IKE’ (MeV) IKE’ (MeV) o’~ References

36Ar(270 MeV) + 92Mo 61 61 ±9 190±40 [5.10,3.131
40Ar(270 MeV) + ‘°°Mo 61 54±14 140±40 [5.10,3.13]

°5Mo(1680MeV) + 92Mo 137w 180±30’ 2400 [1.5]

86Kr(515 MeV) + ‘66Er 193 194
3OO~ [5.11,5.12, 3.13]t6Kr(703.5 MeV) + ‘66Er 182 198 675z [5.11,5.12, 3.131

‘44Sm(1000MeV) + 144Sm 299 313 283±30 [5.13,5.14, 3.13]
“4Sm(970MeV) + 154Sm 279 298 357±36 [5.13,5.14,3.13]

‘36Xe(94OMeV)+209Bi 349 326 250±lOO~ [5.15,3.13]
‘36Xe(1130MeV) + 209Bi 335 363 510±

5O~ [5.16,3.13]136Xe(1420MeV) + 209Bi 322 286 960±l00~ [5.17,3.13]

2ttPb(1575MeV) + 208Pb 508 503
23O~ [5.18,3.13]238U(1766MeV)+ 592 593 550~ [5.19,3.13]

Evidently, random neck rupturegives accuratepredictionsfor ordinary fission (see252Cf in table
5.1), reasonableonesfor the heavysystems(table5.2), but only moderateresultsfor the fission of very
light nuclei (table5.1). However,relative to the rangeof about 600MeV the deviationsarenot larger
than5%.

Concerningthe dependenceof TKE on the energyof the incidentparticle,onecan only saythat it is
very weak both in experimentandtheory,cf. Table 5.1.

Most reactionscited in the tablesimport a greatdealof excitationenergyinto the scissioningnuclei.
Justbecauseof that theywere selected.Namely, in suchreactionsquantumshellsare smearedout so
thatrandomneckrupturewith its conceptsfrom continuummechanicsshouldbe valid. Two exceptions
are the spontaneousfissions of californium and fermium. These examplessuggestthat randomneck
rupturemight alsobe usefulwhenquantumeffectsarepresent.This will be exploitedwidely in chs.7 to
9.

For fission of astatineandsimilar nucleiexcellentdatahavebecomeavailablerecently [5.20].They
confirm the conclusionsthat can be drawn from the materialspresentedhere.

5.3. Theneckrecollectsasymmetry

Oneof the centralproblemsof deep—inelasticheavy-ionreactionswas the invariability oftheaverage
mass.If, for example,a ‘32Xe projectile was fired at 209Bi, then,on the average,a fragmentwith mass
numberof about 132 cameout, in spiteof giant massfluctuations.This invariability was a miracleuntil
it was shown by eqs. (4.6), (4.7) that it is a propertyof neckrupture: the nucleonsthat projectile and
targetcontribute to the commonneck are on the averagereturnedto the fragments.At presentno one
knowsthe true contributionpolicy, but the independenceof the resultson the parameterp. showsthat
this doesnot matter.For instance,if the projectilecontributesmany nucleonsit pushesthe smallest
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diameterof the neck far away.Therefore,at rupturea largepart of the neckgoesbackto the former
projectile. If the projectilecontributesless,it alsoreceiveslessat scission.In thisway the neckactsas a
memory.

One of the few discriminatorsbetweendeep—inelasticcollisions (DIC) and fission is hencethe
averagemassnumberof the fragments.For fission, the reactiongoes through a true compoundstate.
Memoryof initial asymmetryis lost theresothat the averagemassnumberof the fragmentsappearsat
mass symmetry,providedshell effects do not interfere. For DIC, a compoundstateis neverreached.
Targetandprojectilejust touchto makeaneck, althougha massiveone. The initial asymmetryis thus
preservedon the average.

Discrimination betweenDIC and fission becomesuncertainfor Acn 260. In such systemscom-
poundnuclei are very unstable,in particularif they are excited.Therefore,a smoothtransitionfrom
DIC to fission is observed.The phenomenonwas investigatedwith much care (see, e.g., [5.111and
[6.22]),but it is not typical for DIC. If A~5<230 andthe projectilemassdiffers from that of the target,
fission fragmentscan be separatedfrom DIC products. For ~ > 300 fission fragments do not exist
sinceCoulombforcesprohibit a compoundstate.

Theserelationsareillustratedin fig. 5.2. In threeof the four casesit demonstratesthe invariability of
the averagesin spiteof increasingvariances,accordingto measurementsandaccordingto randomneck
rupture.The Ar + Mo andKr + La systemsare below~ = 230, Xe + Bi is aboveAcn = 300 andonly
Kr + Er is in the mixing zone.Therefore,it is understandablethat the random-neck-rupturecalcula-
tions that were madefor pure DIC gave fair resultsin all casesexceptfor Ke + Er.

To judge the quality of the predictionsdue to random neck rupture, one has to look for the
achievementsof the most successfulcompetitor.This competitoris the diffusion or transportmodel,
severalversionsof which havebeendevelopedin the past,see,e.g., [5.22]and[5.23].Diffusion models
describethe approachto that equilibrium to which scissionpoint models such as [1.4] are limited.
Diffusion modelsare henceextrapolationsof equilibrium theories,without a qualitativechangeof the
physicalingredients.Typical results of diffusion calculationsare shownin fig. 5.2 by the dotted lines.
The crux with the diffusion modelsis that theycannotattainthe large measuredvariancesevenwhen
they are tunedto do so. But most striking is the invincible drift to symmetry at the larger variances.
Even for the mixed Kr + Er systemthe random-neck-ruptureprediction is better than that of the
diffusion model. Details can be found in [3.13,3.14].

The meritsof random neck ruptureare limited hereto reproducethe correctcorrelation between
varianceand average.The varianceswere not determinedindependently.In order to learnhow the
bold lines in fig. 5.2 werecomputed,you might wish to rereadsection4.2, in particularthe final part.
Thereit was statedthat the prescissionshapehasonly two degreesof freedom:its semilengthI and its
asymmetry,expressedby the massnumberA~,of the projectile. While A~,was given immediately, we
had to derive the length1 from the massvariancea~or, whenthis was not available,from the charge
varianceo~via

2 _ 22

0’A (A~~/Z~~)o-~. (5.6)
The mass distribution and hencealso the averagemassnumberof the fragmentswere thenobtained
from the ruptureprobability (4.8). If you want the averagechargenumberZ of the fragments,this can
be obtainedfrom

2 = (Zcn/Acn)A (5.7)

or from the minimum-potential-energyapproachdescribedin section4.4.
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Fig. 5.2. Correlationsbetweenaveragesand variancesof the fragmentmass distributions in severalheavy-ionreactions.In all the parts, the
experimentaldataaredistinguishedby opensymbolsandpartlyby error bars.Thick ordottedlinesdepictthetheoreticalresults.The thick lines are
predictionsof randomneck rupture calculations,the dottedlines areoutputof a diffusion code. The thin lines in parts (c) and(d) connectthe
experimentaldatato makethetrendsmoreobvious.Masssymmetryis pointedoutby thearrows.Actually in parts(b)—(d) themassquantitiesare
replacedby chargeobservables,butbecauseof equations(5.6)—(5.7)conversionis sostraightforwardthatall thegraphsconveyessentiallythesame
information. Part(b) containsdatafrom threeexperiments,namelylanthanumbombardedby kryptonat 505MeV (triangles),610keV (squares),
and710MeV laboratoryenergy(circles). Part(c) displaystwo sets,kryptonat incidentenergiesof 515MeV (triangles)and703.5MeV (circles). Part
(d) again sheltersthree experiments,xenon at 970 MeV (triangles), 1130MeV (squares),and 1420MeV (circles). The theoretical curvesare
terminatedwith correspondingsymbols to indicate to which experimentthey belong. The experimentaldata were taken from [5.10], [5.21],
[5.11,5.12] and [5.15—5.17],respectively.The theoreticaldatawere shownfirst in [3.13]and [3.14].

Hencethe neckcan makelargemassvarianceswithout changingtheaveragemass.For DIC this is a

physically importantdiscovery.

5.4. The neckgeneratesmassfluctuations

The hugediscrepancybetweenmeasuredmassvariancesandthosecalculatedusingdiffusion models
was the reasonfor us to developrandomneckrupture.In fission, the samediscrepancieswereknown
long ago,but sincetheywere factor-2errors,theyweredisregarded.Forexample,in table5.1 the value
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of o~observedin the fission of 204Fr is about 1.5 timestoo largefor an equilibrium theory [5.6]. More
or lessthe sameis true for theo~of 252Cf(sf) [1.4]. In addition,a dynamicalmodel[2.3] that includes
morethan equilibrium fluctuationshad problemswhenit was comparedwith the a + Bi data shownin
table5.1. However, thesetwo were only factor-2errorsso thatonecould hopeto cure the diseaseby
quantitativeimprovements.Butsomedeep—inelasticreactionsexhibitedfluctuationsthatwere anorder
of magnitude beyond the predictions of diffusion theories. Among these are the reactions
Xe(1420MeV) + Bi and Mo(1680MeV) + Mo, see table 5.2. Also figs. 5.2b, c, d visualize the
discrepanciesbetweenthe observedvariancesandthe valuescalculatedwith diffusion theory evenif the
drift to masssymmetry is disregarded.

The reasonfor the massfluctuationsbeingtoo small is discussedat length in [5.23].The arguments
developedtherecan be summarizedas follows: if two nascentfragmentsarebridgedby a thin neck,it
costs much binding energyto createan asymmetricconfiguration. Thermal or quantalfluctuations
cannotspreadagainstthis confinement.Whatactuallyhappensis describedin section3.3: asymmetryis
generatedwhen the neck is still thick and the shift of the dent takesessentiallyno energy;later on,
when the potential energywould like to restoresymmetry, it is blockedby inertia. This latter fact
establishesthe invariability of the averagemass,as discussedin the previoussection.

For the theoreticalTKEspresentedin the tables5.1 and5.2, the experimentalcr~were used.Hence
agreementbetweenmeasuredandtheoreticalvariancescannotbe celebratedas a success.Nevertheless
it mustbe stressedthat randomneckrupture canaccountfor thelargestvariancesevermeasured,seethe
o’~of the Mo + Mo reactionin table 5.2. In fact, the largestvariancerandomneckrupturecan give is
aboutA~~/12.

5.5. Narrow massdistributions imply high TKE and vice versa

One of the significant correlationswhich random neck rupture gives is that large total kinetic
energiesTKE mustcomewith small massvarianceso~.This anticorrelationwas alreadyannouncedin
item (i) of section 3.1 and is madecomprehensibleby figs. 3.la, b. Ample evidenceexists for it.

For example,considerthe two outliers in the total kinetic energysystematics(seefig. 5.1). Oneof
them sits at Z~n/A~3= 1571 and belongsto 258Fm(sf). The other at Z~

5/A~
3= 3603 stemsfrom the

deep-inelasticcollision 208Pb(1575MeV) +208Pband deviatesnot that muchfrom the full line. When
thesereactionswith their unusuallyhigh TKEs are looked up in the tables5.1 and 5.2, one finds for
them unusuallysmallvaluesof a-~.Reactionsfor comparisonare 252Cf(sf) and238U(1766MeV) +

Evenmore striking are recentdata on the heaviestactinidesshownin fig. 5.3. Thesenuclei fission
throughtwo different fission channels,as will be discussedin detailin sections7.2 and8.3. Whatonly
mattershere is that the relative yields changeabruptly. For example,spontaneousfission of 259Md
preferentiallyproducesfragmentswith low TKE, and the correspondingmassdistribution is broad.
260Md, on the otherhand, is ratheractive at high TKE, and thusthe massdistributionis narrow.

All the data presentedby Hulet and co-workers [1.11]exhibits the sameanticorrelation.Similar
evidencecan be found in sections7.2 and8.4, wherethe meaningof the superlongfission channelsand
of the standardI/Il splitting will be discussed.At presentno exceptionfrom the rule expressedby the
title of this sectionis known.

Narrow massdistributions indicate a short neck. Randomneck rupture cannotclarify why short
necksareformedin just 255Fm(sf)and 208Pb(1575MeV) + 208Pb.This is the aim of the fission channel
calculationsto be discussedin the chs. 7, 8 and 9. Anticipating these,we remark herethat the short
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Fig. 5.3. Massdistributions(right-handside) and total kinetic energydistributions (left-hand side) from thespontaneousfission of 259Md (lower
parts) and260Md (upperparts).The histogramsdisplay theexperimentalresultsby Hulet et al. [1.11].Also thenormalizationwastakenfrom the
experimentalwork, namelyin termsof fissioneventscollectedin 5MeV bins for IKE and in four-nucleonbinsfor massnumberA. Thedottedlines
are predictionsof randomneck rupture and multichannel-fissioncalculations,which will be discussedin more detail in chs. 7 to 9. Only those
componentsareshownthat aredominantin therespectivefissioningsystem.In 259Md this is the “standard”channelwith low kinetic energyanda
broad, slightly asymmetricalmassdistribution. Ihe “supershort”channelprevails in 260Md with a high averagekineticenergyanda narrow mass
distribution. Ihe superpositionof both componentswould accuratelyreproducetheexperimentalresults.

necks have something to do with the closed shells near Z = 50, N= 82 and Z = 82, N = 126,
respectively,that arisein the stretchedcompoundnucleusprior to scission.

5.6. Theslopesof neutronmultiplicities

Thereare threelarge setsof scissiondata, namely total kinetic energies,massyields and neutron
multiplicities. In the previous sections we examinedthe correlationsthat random neck rupture
establishesbetweenthe first two sets.Now we shall report what experimentstell usabout the interplay
betweenthe massyields and the neutronmultiplicities.

According to randomneck rupture,neutronmultiplicities contain information on the variability of
the rupture position and hence on the shift instability. In stating this it is assumedthat neutron
multiplicities reflect the excitationenergiesof the fragmentsas describedin the mostprimitive way by
eq. (4.19). Excitation energies,on the other hand, dependon the deformationsof the newborn
fragmentsas expressedby eq. (4.15). The first term on the right-handside of (4.15),Edef(A),which is
causedby a non-equilibriumprocess,generatesa muchsteeperdependenceon the massnumberA than
the secondterm E’A/AC~, which is due to statistical equilibrium. This is a prediction that can be
checkedby experiments.

Figure5.4 displayssucha check.In thesedata,the experimentaliststhemselvesreplacedthe neutron
multiplicities by excitationenergies.Onecan seethat only randomneckruptureexplainstheenormous
slopesof E* (A). For more experiments,comparisonis summarizedin table 5.3.

Data as shown in fig. 5.4 were criticized by other experimentalistsas not beingreliable. Namely,
those data were taken from the kinematicsof the fragments;no neutronswere registered.Direct
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Fig. 5.4. ExcitationenergyE°as a function of thefragment mass numberA from fission of
213At [3.12].Ihe dots arethe experimentaldata

obtainedby Plasil and his colleagues[5.24].The full line depictswhat randomneck rupture gives.The dash-dottedline is accordingto statistical
equilibrium, and the dashedone stems froms Nix’s dynamicalmodel [2.3].

Table 5.3
Slopesdi/dA for severalfissioning systems.In thesesystems,theneutronmultiplicities i(A)
look like straight lines, at least in a broad neighborhoodof mass symmetry, so that the
specificationof a uniform slopemakessense.The results are given accordingto statistical
equilibrium, thatis that theexcitation energyis sharedby thefragmentsin proportionto their
massnumbers,accordingto thedynamicalmodel [2.3], accordingto randomneckrupture,and
accordingto meaasurements.Ihe last column containsreferencesto the experimentalworks.
The measurementswith astatine and actinium were similar but not identical, the main
differencebeing that the first measurements,respectively,were done using the kinematical

method, while thesecondoneswere performedby direct neutroncounting

Nucleus Equilibrium Dynamicalmodel Rupture Experiment References

203Po 0.02 0.02 0.06 0.06 [5.25]

213At 0.02 0.02 0.08 0.09 [5.24]
0.02 0.02 0.08 0.04 [5.26]

227Ac 0.01 0.02 0.09 0.09 [5.27]
0.01 0.02 0.08 0.05 [5.26]

measurementsof the neutronsgavesmaller slopes,but slopesstill too largeto be explainedby thermal
equilibrium,see table5.3 for documentation.The last point is comfortingfor a disciple of randomneck
rupture.

Both experimentalmethodshave disadvantages:the kinematicalmethod derives a small quantity
(the numberof evaporatednucleons)from the differenceof two largenumbers(the massnumbersof a
fragmentprior to and after evaporation).The direct measurementsmust take the relation between
neutronmultiplicity andfragmentmassfrom the angulardistributionof the neutronsby deconvolution.
A differential methodusuallysteepensdependenceswhile a deconvolutionsmoothensthem out. One
might thereforeassumethat the truth is enclosedby the two methodsfrom aboveandbelow.

At the end of section5.5 we alreadymentionedthat the resultsderivedfrom randomneckrupture
do not dependon the way in which aparticularneckis created.Hencerandomneckruptureshouldalso
be applicableto deep-inelasticcollisions and fusion—fissionin heavy-ionreactions.In thesereactions,
the equilibrium term of (4.15) is much moreimportant,sinceE~is larger than in low-energyfission.
Nevertheless,observablerises of the slopesdi~/dAshould still exist. For this thereis evidenceby
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Bentonet al. [5.28],see fig. 5 .5b, but againstthis evaluationobjectionswere raised[5.29].Moreover,
recentwork by Hinde [5.30]andRossner[5.6] and their co-workersindicatesthatneutron-multiplicity
slopesshouldbe as small as predictedby statisticalequilibrium. Comprehensivestudiesare necessary.

5.7. The sawtoothof neutronmultiplicity

Accordingto randomneckrupture,adouble-humpedmassyield Y(A) is inevitably connectedwith a
sawtooth-shapedneutronmultiplicity 1(A). This is avery specific relation,andthereforeit was already
stressedin item (ii) of section3.1. A violation would either indicateevaporationof chargedparticlesor
gammarays, or invalidate randomneckrupture.

The way in which randomneckruptureexplainsthis effect is illustratedin fig. 3.2. Onecanseethat
the data arereproducedby the theorywith an accuracyof about1 neutron.Furtherverificationsof this
kind can be found in fig. 7.4. So onemayclaim that in nuclearfission no contradictionto randomneck
ruptureseemsto exist.

The double-humpedmassdistributionreflects an asymmetricalprescissionshape.In nuclearfission
sucha shapeis dueto the quantaleffects. In deep-inelasticcollisions theprescissionshapepreservesthe
initial asymmetrybecauseof thegeometryof the neck,seesection5.3. All that is essentialfor the yield
Y(A) and the multiplicity i’(A) is the mereexistenceof an asymmetricalprescissionshape.Hence also
in deep-inelasticcollisions a neutron sawtoothshould be observableif target and projectile have
differentmassnumbers.This was predictedin [3.14].Meanwhiletwo verificationscan bepresented,see
fig. 5.5. More recentdata measuredby Hinde et al. [5.30]were interpretedas a refutation of that

V(Z)

:~ ~~~Fe(476MeV)~J65Ho
symmetry Z

0 I I I I

20 30 40 50 60 70 80

E*(A)/[E*(A)+E*(A~fl_A)] ~
0.4

0.3’ ~“~~Fe(5O5MeV}~65Ho

0.2 - - A

Fig. 5.5. The shareof excitationenergythat a fragmentwith massnumberA receiveswhenproducedin a deep-inelasticreaction.In part (a), the
shareis expressedby the neutronmultiplicity as a function of the fragment’schargenumberZ. Consult eqs. (4.19) and(5.7) to have these
quantitiesconverted into excitation energy and mass number. Ihe measurementswere done by Hilscher and co-workers [5.31], and the
random-neck-rupturecalculationby us [3.1]. Part(b) actually displaystheabove-mentionedshare,but only that pieceof thesawtoothshapewas
measuredthat is associatedwith the light fragments[5.28].The thick line is againthe resultfrom randomneck rupturewhile thedash-dottedline
representswhatoneshouldseeif statisticalequilibriumprevailed.Notethat, accordingto thedata,only 30% of thenucleonsgetalmost50% of the
excitation energy.
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prediction, but this is debatablesince thesedata seemto stemfrom fusion—fissionprocesses(with a
symmetrical prescissionshape)and to contain very few deep-inelasticevents(from an asymmetrical
prescissionshape).

Thescission-pointmodel alsosucceededwith the sawtoothcurveof neutronmultiplicity. Seefig. 9 in
ref. [1.14],wherethe deformationsof the nascentfragmentsare relatedto a multiplicity curve. Kluge
and Lajtai [5.32] even reached appealingquantitative agreementwith uranium, plutonium and
californium data. But all thesecalculationsare basedon statisticalequilibrium. It thereforeseems
impossiblethat they can copewith the slopespresentedin table 5.3.

6. Fluctuations in the elongation

6.1. A difficulty with the TKE distributions

In nuclearfission, fluctuationsof the total kinetic energyare almost as impressiveas those of the
mass of the fragments. TKE fluctuations can be caused either by varying semilength 1 of the prescission
shapeor by changesin the prescissionkinetic energy K6. Furthermore,it is not obvious if these
fluctuationsaregenerated,say,on the saddleandareonly propagatedto scissionor if theyarebuilt up
all along fission by stochasticinteractions.That suchquestionscan be tackledby a Langevinequation
or, equivalently,by the correspondingFokker—Planckequation,hasbeenexploitedmore than once
[6.1—6.11].

Moreover,Fokker—Planckequationshavealso beenusedto computethe massdistributionof fission.
Such approachesare not principally in contradiction to the ideaspresentedin the previous three
chapters.Namely, when a criticism is raised againsta certainstatistical theory then it is rarelyagainst
the useof a Fokker—Planckequationbut ratheragainstthe underlyingphysicalpicturethat is modelled
by the particular Fokker—Planckequation.A successfulapplication of a Fokker—Planckequationto
nuclearfission in a spirit similar to thatdescribedin ch. 3 was publishedby AdeevandGonchar[6.12].
Theymimicked the capillarity instability by stoppingtheir calculationswhenthe nucleushadreachedits
prescissionshapeand evaluatedthe observablesfrom the prescissionshape.

Fokker—Planckequationsalso seemwell suitedif massandTKE fluctuationsareto be studiedin a
unified way [6.10].So this kind of theory is probably ideal to copewith all thesecomplexities.

However, TKE fluctuationspose an especiallytough problem.The problemis connectedwith the
long-known dissymmetryor skewnessof the TKE distributions, which is zero in most treatmentsbut
sizeablein nature.

The underlyingdifficulty is muchmore seriousthan the appearanceof an unwantedthird moment.
Namely, a recentanalysis[6.13]of the experimentaldatawith very good statisticsshowedthatthe TKE
distributionsY(TKE) for fixed massnumberA arewell describedby

Y(TKE)= (~)
2hexp( (~ lmax)2) (6.1)

( mm) dec

On the right-handside

..e~Z(Z~~Z) 62TKE (.)
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is a replacementfor TKE. If one drops all sophisticateddetailssuch as fragmentdeformationand
nuclearinteraction,onemayinterpretL as thesemilengthof the prescissionshape;compare(6.2) with
eqs. (4.10) and (4.14). The fit parameters

h, ~‘min’
1max’ 1dee (6.3)

haveintuitive meanings.h approximatesthe heightof the distribution because200MeV is about the
averageTKE of the fissionof the actinides(seethe factor (200/TKE)2 in front of the right-handside).
The distributionis zero for all L smallerthanlmin~1min hencedenotesthe smallestsemilengthpossible.
1max is the length for which the exponentialis largestand 1dee gives the scale for the decreasewith
increasingL. Oneof the excellentfits thatwere madepossibleby the function (6.1) can be admiredin
fig. 6.1. Similar agreementwas reachedfor the neutron-inducedfission of uranium235U(n,f) whenever
therewere enoughcountsand no dominantsuperpositionfrom different fission channels.So thereis
not much doubt that (6.1) is the representationofthe TKE distributions.

Alarming in (6.1) is the odd behaviorat large and small TKE, which are outsidethe reachof all
currently availableFokker—Plancktheories.

It is thereforeclear that the standardapproachesmiss anessentialpoint in the mechanismgenerating
the TKE distributions.Nevertheless,just for calibration it is useful to havesomesimple formulas in
order to estimatewhat the conventionaltheory of stochasticprocesseswould predict. These simple
formulaswill be derivedin the next sections.

6.2. Exposition: the Langevinprocessofstretching

In section 4.4 we learnedto obtain the total kinetic energyTKE(A). Its averageover A, TKE

withoutargument,containsalmostthe sameinformation asthe function TKE(A) sincethe dependence

I I I I

Y/counts

A=100

~ ~‘ TKE/MeV \

100 )øct~*cW’ I I

120 160 200

Fig. 6.1. Typical distributionof totalkinetic energyY(IKE) if themassof afragmentis fixed (A = 100 in thepresentcase).The data, displayedby
asterisks,were taken from the spontaneousfission of 252Cf [6.14].Theyield is not normalizedbut givendirectlyby countsto makethequalityof the
statisticsexplicit. The line drawn is the bestfit basedon thefunction (6.1). It fits perfectlyover four orders of magnitude.The dashedline showsthe
best adaptionof theGaussianh exp{—0.5[(TKE — TKE)Jo-E]2} with h, IKE and~ asadjustable parameters.Discrepanciesshow up when more
than one order of magnitudeis to be represented.For laterreferencewedeclareherethat the massnumber A = 100 waschosenbecauseit is nearly
a sheer productof the so-calledstandard II fission channel.
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on A is generatedby the trivial factor Z(Z~5— Z) in the Coulombrepulsionenergy.This is why we
could assign a single semilength to each prescissionshape.Nevertheless,the semilength of the
prescissionshape must fluctuate due to the coupling with the microscopic degreesof freedom.
Consequentlythe total kinetic energyfluctuatesevenif only a certainfragmentationwith fixed mass
numberA is considered.The goalnow is to calculatethe varianceo~of the total kinetic energy.

Let uskeeponly the semilength1 as the essentialdegreeof freedom.Thus we restrictourselvesto a
single equationof motion

ml(t) = —m~1(t)+ F + mR(t), (6.4)

the standardLangevinequation.To specify the quantitiesin this equation,we develop the following
physical picture [6.11]:

(i) The inertial parameterm, beingidenticalto m11 in (3.1), is takenas a constant.Its valueis the
reducedmass

m = m5~~A~11/4 (6.5)

of the relative fragmentmotion. mnue representsthe massof a nucleon.
(ii) The constantdamping~describesthe energytransferto microscopicaswell asto othercollective

degreesof freedom.We shall seethat only the product~t6 matters,wheret~denotesthe time that the
nucleusspendson its way from the last barrier to scission.The product~t6can be obtainedfrom the
fraction K6/~U,see (vi) below.

(iii) The force F is also takento be constant.We obtain it from calculatedvalues of the potential
energyby

F=z~U/z~l. (6.6)

z~lgives the increaseof semilengthbetweenthe last barrier and scission.m~Uis, up to a sign, the
potentialenergythat is freed on descent.For it, the following formulaapplies:

~~_1es+Ej~ ifEmnp<B, 67
— I Edes+ B otherwise, ( . )

with Edesbeingthe differenceof potentialenergybetweenthe prescissionshapeandthe groundstate.B
denotesthe heightof the barrier andthe input energyE1~~is fixed by experimentalconditions.Formula
(6.7) has to be complicatedsince it must copewith low-energy fission, see section 8.2, and deep-
inelasticcollisions, seesection6.4. In spontaneousfission, for example,E1~~is zero,andthen it is clear
that the nucleuscannot gain more energythanz~U = EdCS. In heavy-ioncollisions Einp is essentially
identical with the energy loss E1066, usually a large amountof energy.Nevertheless,~ U can never
becomebigger than Edes+ B.

(iv) The randomLangevinforceR(t) haszeromean,is 3-correlatedin timeandof constantstrength
D:

t~R(t))=0, (6.8)

(R(t)R(t’)) = D8(t — t’) , (6.9)
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wherein the diffusivity D is related to the damping ~ and the temperature T throughEinstein’s relation

D=2T4Im. (6.10)

This meansthat the nucleusis permanentlysubjectedto randomforces. The origin of theseforces is
supposedto be thermal; specific quantumfluctuationsare neglectedbecausetunneling is not con-
sidered.

(v) The temperatureT is related to the excitation energy E~by the familiar formula

T/MeV= [8(E~IMeV)A~1]112. (6.11)

(vi) In reality, the excitationenergy increasesfrom saddle to scission.We take its value E~at
scissionandfix it accordingto the following recipe:the gainin energydue to the descentfrom the last
barrier is partly transformedto kinetic energy

K
5=çb(x)AU, (6.12)

partly dissipated

E*j~~ ifE1~~<B 6— ~cb(x) AU + Einp — B otherwise. ( .13)

The first contributionson the right-handsides representthe excitationcausedby friction on the way
from barrier to scission.Only a fraction of AU is transformed to excitation. ji(x) allots thisshare.For
the momentwe just haveto know that ~(x) takesonly two values

1~ ifA <250
~(x)=~1 othe~.vise. (6.14)

The function 4(x) will be definedin (6.25),andthe assignment(6.14) is relatedto the odd—eveneffects
in fission [6.15,6.16]. The contributionE1~~— B in (6.13) is the residualexcitationinheritedfrom the
compoundstate.

All the remainderof AU, which is not absorbedby K6 or E1, hasto go into collectivedegreesof
freedomotherthanelongation.

One can develop the subsequenttheory from the Langevin eq. (6.4) alone, and this is what we shall
do. Just for reference we give the correspondingFokker—Planck equation

a5p(l, v, t) [—vt9j — a0(—~v+ F/rn) + (DI2)8~]p(l,v, t). (6.15)

Semilength1 andvelocity u (=1) aretheindependentvariables,andp(l, v, t) symbolizesthe probability
densityoneis seekingwhenoneworkswith the Fokker—Planckequation,seethe textbooks[6.17—6.19]
or morespecializedfor applicationsin nuclearphysics[6.20,6.21] and,for the problemat hand,[6.11].

6.3. Solution:formulasfor the TKE variances

The plan is first to extractthe averagedynamicsfrom (6.4).The resultingformulaswill enableus to
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eliminatethe vaguelyknownscissiontime t~in favor of the scissionlength l(t = t6). With this we can
processthe variances.

Write the Langevineq. (6.4) as a first-order system:

(~)= -A(~)+ (F/m ~ R(t))’ (6.16)

with the dampingmatrix

A:=(~ ~1) (6.17)

as an abbreviation.Theelementarytheoryof ordinarydifferentialequationsgives thesolutionof (6.16)
as

(~)= et(~%~)+ f ~ + ~(t - T)) dr. (6.18)

Averagingmakesthe Langevin forceR disappear,cf. eq. (6.8). With

e~t=1— A 1 , (6.19)

you can solve the integralsin (6.18). The meanvaluescomeout as

(1(t)) = (1(0)) + -~ t + (~v~o~- F~1 -e (6.20)

and

(v(t)) = (v(0)) - ((v(o)) - -~)(i - e~t). (6.21)

Whatwe look for is the statusat scission,hence t = t~.Then we see,it is only the length difference
Al: = (1(t6)) — (1(0)) betweenthe last barrierandthe scissionpoint which playsarole. In addition,at
leastin fission, the velocitiesmustbe small on top of the barrier. Therefore,weput (u(0)) = 0. Hence
a condensedversionof the eqs. (6.20) and (6.21) is

Al = (x — 1 + e~), v6 = (1 — e~), (6.22)

m~

with v~:= (v(t6)) and

x:=~t5. (6.23)

The first equationin (6.22) showsindeedthat onemayeliminatethe scissiontimet~by the lengthof the
descentAl.
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However,one can go one stepfurther. The prescissionkinetic energymustbe of the order

K6~~mv~. (6.24)

Putting(6.22) with (6.6) into this leadsto

K6IAUc6(x), ~(x):=~ ~ (6.25)

In words: the fraction K5/AU of potential energy that turns into kinetic energy fixes the friction
parameterx andvice versa.The impellentfor theassumption(vi) in the previoussectionshouldnowbe
clear.

For the computationof the TKE variancewe needthe covariancematrix

(I’11(t) I’15(t) \
F(t) .— ~F(t) 1(t)) (6.26)

with the elements

F11(t) := ((1(t) — (l(t)))2),

F~~(t):= ((1(t) — (l(t)))(v(t) — (v(t)))) , (6.27)

I~~(t):= ((v(t) — (u(t)))
2)

To find them,onehasto subtractfrom (6.18) the meanvalue(this removesthe termwith the constant
force F), to squarethe expression,and to take averages.The term with the squareof the Langevin
force doesnot drop out so that (6.9) must be applied. One obtains

F(t) = e~~F(0)e~~Tt+ Je~De~~TTdT. (6.28)

For shorthand the diffusion matrix

~:=(~~) (6.29)

was defined.The superscriptT denotesthe transposeof the matrix.
Equation (6.28) allows a quantitative discussionof a question that was raised at the outset of this

chapter, namely on the origin of the observedfluctuations. The first contribution on the right-hand side
is the covariancedueto the fluctuationsat the beginningof the process,also called the homogeneous
part f~~0m• The second contribution, the inhomogeneouspart ~ reflects the influence of the
permanent random interactions.

Becauseof (6.19),evaluation of (6.28) is easy.We do not give here the homogeneouspart since it is
lessimportant. Namely, pham becomesconstant for large times while F°” increases.We madean a
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posterioriestimateandfound that less than5% of the total variancecan comefrom the homogeneous
part.

The inhomogeneouspart is evaluatedas

mnh T —x —xF11 (t~)= —i [2x — (1 — e )(3 — e )]
m~

ptnh(t) = -~ (1— e~)
2, (6.30)

~ (1-e~).

Einstein’s relation (6.10) was used to eliminatethe diffusivity.
We haveTKE = V~

0~(l)+ ~ + K6(v6) in analogyto (4.14). This allows us to find the ultimately
searchedfor variancesof the total kinetic energyas

2 [(dVcou)
2

1( ) + (~-~)ç(t6) + ~ (6.31)

The derivativesare accordingto (4.10) and (6.24)

dV -V~ dK
di = °~ -~~——~= mu6. (6.32)

The remainderof the work is only insertion:put (6.30) and (6.32) into (6.31),use(6.22) to replacev6
and~, and eliminateF with (6.6). Finally, one arrivesat

2 2 2 2
= °E,c + °E,v —

2~E,m (6.33)

with

Al (2T\112 (2x —(1—e~)(3 — e~)\”2

UEe~VCouT ~ i/i
1(x), ~/i1(x):rz~ 2(x_1+e_x) )

UEV =(TAU)
112~(x), ~(x) ((1_e~)3(1+~))l/2, (6.34)

Al 1/2 (1 — _X)3 1/2

~E,m = (v~
0~~ T) ~1m(X), ~m(X)~ (~— i~ e~)

For brevity we wrote here 1 := 1(t6). TEC and ~ were the standarddeviations of TKE if the
fluctuationsof length and velocity would exclude each other. The mixed term °E,m embodiesthe
correlation betweenlength and velocity fluctuations.Note that thesecorrelationsdiminish the total
variance.The reasonis the decreaseof the Coulombrepulsionfor increasingscissionlength.

The non-dimensionalfunctions~, i~’~and ti/rn areshownin fig. 6.2. Youmight wish to usethis figure
for quick estimates.
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Fig. 6.2. The universal functions çb(x), ~Ji,,,(x),çlç(x) and IIII(x) [seeeqs.(6.25) and (6.34)] as theydependon the friction parameterx [seeeq.
(6.23)]. For values of x largerthan ten the asymptoticsnotedat thecurvescan be taken.

6.4. Someworked examples

We shall give a few examplesfor the applicationof eq. (6.33) to heavy-ionreactions.Thesearethe
simplestcasesas shell effectsdo not playarole. Applicationsto low-energyfissionwill be presentedin
section8.2.

The casesto be consideredarelisted in table6.1. In thesereactionsit is not clear if deep-inelastic
collisions or fusion—fissionreactionsprevail. For the reactionswith uranium, the massnumberof the

lable 6.1
IKE standard deviationso~,theoretical (t) and experimental(e) for someheavy-ionreactions. This table contains all quantities
necessaryfor the computationsexplained in section 6.4. Referenceto the experimentalists’paperscan be found in the last column

Reaction E~(MeV) V~0~(MeV) ~U (MeV) Al (fns) ! (fm) o’~(MeV) o’~(MeV) References

+ ~Ca 100 270 74 11.2 19.2 26 27 [6.22,6.23]
200 31 35236U+ 160 100 224 38 7.0 18.3 20 22 [6.22,6.23]

98Mo + 98Mo 300 173 12 5.0 16.9 28 32 [6.24]
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compoundsystemis between230 and 300. That this is a problematicdomain,was discussedin section
5.3. Although lack of discriminationfrustratesthe computationof massyields, it doesnot defeatour
access to TKE fluctuations.

Determinefirst from eq. (6.14) the friction parameterx [definedin (6.23)]. Namely, for the systems
with uranium,(6.14) demands4(x) = 0.25. With the graphof this function in fig. 6.2 we find x = 2.7.
The valuesof the universalfunctions can also be read from fig. 6.2: ti/1(x) = 0.87, ti’6(x) = 0.71 and

= 0.68. For the system with molybdenum, (6.14) postulates ~(x) = 0.375 so that x = 1.7 and so
forth.

Next the prefactorsin (6.34) haveto be found. The temperatureT follows, accordingto eq. (6.11),
from the excitation energyE~and the mass number Aen of the stretchingcomplex. In heavy-ion
reactions,everythingon the right-handsideof (6.13) is small comparedto Emnp, andthe input energyis
about the same as the energy lossE1066 so thatE1066 becomesvirtually identicalwith E~. E~066, however,
is an observable that varies widely in heavy-ion reactions,see the reaction

238U + ~8Cain table
6.1.

The length 1 at scissionmaybe estimatedfrom (5.1). More accuratevaluescan be obtainedif the
massdistributionis available,seesection3.1 for the idea andchapter4 for the detailedprescriptions.
Likewise, a first estimatefor the CoulombrepulsionV~

0~can be takenfrom the Coulombterm in the
systematics (5.5), 0.14Z~5IA~

3,and a better value can be found by the methods of chapter 4.
The other numbersrequiredin the prefactors(A U, Al and 1) are characteristicsof the potential

energy.For applicationsin heavy-ionreactions,wherequantalshell effects arenegligible,a liquid-drop
codemay be sufficient. You must determinethe potentialenergyat the barrier, its location and the
potentialenergyat scission.

Onegeneraltrait of thesequantitiescan be observedin table6.1: with decreasingtotal massnumber
~ or, equivalently, decreasing fissility (4.17), the length difference Al and evenmore the energy
differenceAU decrease sharply. This is the well known confluenceof barrier and onsetof Rayleigh
instability at small fissilities [3.8].

We haveenteredsomeof our resultsinto table6.1. The agreementbetweencalculatedvalueso and
measuredoneso~is impressive.Of course,the agreementrelieson the assumption(vi) in section6.2,
in particularon (6.14). On the otherhand,one can saythat thesimple formulasderivedin this chapter
establishacomprehensiblerelationbetweenenergydissipationin nuclearscissionandthe width of the
distributionof the total kinetic energy.

Anotherpoint on the physics muststill be made. It was claimedin section4.4 that the prescission
kinetic energyshould be small, K

6 < 10 MeV. Evidence for this was presented in section 5.2. Despite
this smallnessit turnedout (seethe examplesabove)that the fluctuationsof K6 are not negligible.On
the contrary, they are of the same size as K~itself. This means that a small percentage of all nuclei
scission,as far as elongationis concerned,in a stateof almost perfectrest. Otherdegreesof freedom
maybe quite active.

Summarizing:we now havea handytool to estimatethe fluctuationsin total kinetic energy.The
systemcharacteristicsaretakencareof by very simple formulas,namelyby (6.34). That theseformulas
aregood enoughfor a first orientation,was checkedby the examplesin table6.1, andmoreexamples
will begivenin section8.2. Neitherthis simplenor anyothertheory availableatpresentcanexplain the
odd asymptotic behavior of the TKE distribution for large and small total kinetic energies as
representedby formula (6.1). Substantialimprovementsare thereforenecessary.However, it is a
recentinsight that fluctuationsin fission grow during a non-equilibriumevolution[6.1—6.12].We think
that this insight, being the centralpoint of the work presented,will stay valid.
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7. The systematicsof low-energy fission

7.1. Standard,superlongand supershort

Chapter3 startedwith an assertion:the most importantexit-channelobservablesare slavesof the
prescissionshape.A closerlook on the datarevealsthat this might not strictly be true.For example,a
single prescissionshape producesan averageof the total kinetic energyTKE(A) with a smooth
maximum at masssymmetryA = A~~/2evenif this prescissionshapeis asymmetrical.Sizeabledips at
symmetry,as observedin the fissionof uranium,or peaks,as measuredfor fermium(havea look atfig.
7.3 if you haveforgottentheseresults)seemto be incompatiblewith the slaving assertion.

The dilemma immediatelydisappearsif one admits that severalprescissionshapescan be formed.
Then the nearly equal fragmentscome from a prescissionshapeother than the unequalones.The
additionalprescissionshapemust be symmetric(otherwiseit would not predominantlyproducealmost
equalfragments)andit mustbe longer thanthe usualprescissionshapeif adipin TKE(A) is to appear.
In contrast,the additional prescissionshapemust be shorterif a peakin TKE(A) showsup [3.2].

Neverthelessthe original theory with only one prescissionshapewas not completelywrong: most
fission is fission of uranium,thoriumand californium, andthesenucleiproducemostlyfragmentswith
some asymmetryand total kinetic energyaccordingto the TKE systematics(5.4). The events at
symmetryarerare.Oneprescissionshape,henceforthdenotedasthe standard,is sufficientto copewith
more than 95% of all the fission events.

For more precisionwe needat least threeprescissionshapes:standard,superlongand supershort.
Standardis slightly asymmetric and of “normal” length, as shown in fig. 3.2, while superlongand
supershortare both almost symmetricaland appreciablylonger or shorterthanstandard.

Thesedifferences,beingdifferencesin meanlength, areusuallysomewhatlarger thanthosecaused
by the fluctuations that were discussedin chapter6. Hence we expectseparablecomponentsin the
exit-channelobservablesalthoughoverlapmayoccur. We shall noticethis in the figs. 7.6, 7.7, 8.3, 8.4,
8.6 and 8.7.

Therefore, mere inspectionof measurementsinducesone to considerseveralprescissionshapes.
However,one can also derive the standard,superlongandsupershortprescissionshapesfrom theory.
They becomeapparentwhensingle-particlequantumshells areconsideredas will be detailedin ch. 9.
Shell effectsdig ditchesin potentialenergysurfacesas shownin fig. 3.3, sothat the nucleusis driven to
the standard,superlongand supershortprescissionshapes.Hence there are not only threeisolated
shapes,thereare channelsleading to theseprescissionshapes,also called standard,superlongand so
forth.

The channelstraversethe spaceof the deformations.As coordinates in this space we maytakethe
degreesof freedomintroducedin ch. 2. The simplestset is (2.14) with semilengthI, neckradiusr and
location z of the dent. Even this requiresa three-dimensionalspace.Since a sheetof paperprovides
only two dimensions,wemust resortto projectionsonto threeplanes.In fig. 7.1 theseareshown: (1, r)
top right, (r, z) top left and (z, 1) bottomleft.

Consider,for example,the (I, r) projection,top right. The standardchannelis distinguishedby the
full line. It is rootedin the groundstategs. To initiate fission, the nucleuslengthens(1 increases),and
its radiusr decreases. Shortly after the point denoted by 2ndmm it becomesenergeticallyfavorableto
shortensomewhat,while the radiuscontinuesto decrease.We call this rebound“the big loop”. After
the big loop everythingproceedsas expected:the nucleusstretchesand thinsits neckuntil, just behind
the prescissionshapeat +, two fragmentsappear.
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Fig. 7.1. Channelgraphof
252Cf. Ihe figure is explainedin thetext. It wasshownfirst in [3.15].Ihe pooraccuracyof thebarriersis causedby the

useof thesurfaceparametrization(2.14). Bettervaluescan be found in tables8.2—8.4. Channelgraphsof 236U and258Fmwere publishedin [5.9],
[7.1], betteronesin [7.2].A channelgraphof 232Ih appearedin [8.10].

To each point on the line there belongs a shape.Some shapesrepresentativefor the standard
channelin californium are shown in fig. 7.2a, c.

Whatyou see in fig. 7.2c are asymmetricalshapes.But onecannotidentify asymmetryin the (1, r)
projectionof fig. 7.1. For this one mustconsultthe (r, z) projection, top left. The full line depictsthe
samesequenceof shapesas the full line in the (1, r) projection,namely the standardchannel.We see
that the ground state is nearly symmetric, and that, apartfrom minor deviations,the nucleusstays
symmetric until the big loop is reached.Then asymmetrybecomessizeable, z 2.5, but during
approachto scissionasymmetrydecreasesagain.

Let us return to the top-right part of fig. 7.1: thereare otherlines, dashedand dottedones.They
representotherchannels,namelysuperlongand supershort,which branchfrom the standardchannelat
the bifurcationpoints,markedby full circles.All channelsfinish at variousprescissionshapes,indicated
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252Cf

Q3
1. 1 = 9.1 fm r = 7.1 fm z = 0.2 fm
2. 10.2 6.6 0.1
3. 10.8 6.0 0.1

ci~super—short

1. 1 = 11.6 fm r —5.2 fm z = 1.6 fm
2. 12.5 2.8 0.0
3. 14.0 1.1 0.0

© standard

1. L —11.7fm r —5.4 fm z = 2.6 fm
2. 14.0 4.0 1.6

3. 18.0 1.3 0.6

© super—long

1. 1 — 12.5 fm r — 5.7 fm z — 1.0 fm
2. 16.1 4.2 0.1

3. 20.7 2.9 0.3

Fig. 7.2. Visualizationof thefission channelsshownin fig. 7.1 by sequencesof shapes.Part(a) depictstheevolution from thegroundstateto the
secondminimum. Part(b) illustratesdeformationin the supershortfission channel,startingfrom thebifurcation andendingatprescission(+ in fig.
7.1). Part (c) showsa similar changealongthestandardchannel,but thefirst outline in theseriesdisplaystheshapeof largestasymmetry.Finally
part (d) is like part (b) but is for the superlongcase.The formulas relatingtheseshapeswith thecoordinates(I, r, z) are(2.3), (2.9,2.10) and
(2.15). The figure is taken from [3.15].

by pluses.In principle,the trails of the supershortandsuperlongchannelscan alsobeseenin the other
projections(r, z) and (z,1). But since thesechannelsdeviatelittle from symmetry,z = 0, their lines
almostcoincidewith the axes,so thatonly somebulgesappear.Picturesof typical shapeson supershort
andsuperlongchannelscan be found in fig. 7.2b, d.

The fourth part of fig. 7.1, right bottom,showsthe potentialenergycontainedin the nucleusas it
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floats throughone of the channels.For example,the nucleusstartsat the groundstategs with energy 0
(so is the normalization),climbs the first barrierat 1 10 fm, falls into the secondminimum2nd mm
and rises to the secondbarrierat 1 12fm, afterwhich it descendsto scission.The full line describes
this travel for the standardchannel.The other lines do the samefor the other fission channels.

The double-humpedbarrierandthesecondminimumin the standardchannelhavebeenknownsince
1972 [1.2] or even since 1964 [1.1],but the system of barriers relatedto thenew fissionchannelsis new.
Thus the superlongchannelhas its own barrier at 1 14 fm that is higher than any of the standard
barriers, and the sameis true for the supershortchannelat 1 12 fm.

What are diagramslike fig. 7.1 useful for? First, we can take from them the semilengths1 and
asymmetriesz of the variousprescissionshapes.With thesedatawecanentersection4.2, constructthe
prescissionshapeswith flat necks,andfind, accordingto sections4.3 to 4.5, for eachprescissionshape
the yield Y(A) and the other exit-channelvariables;see section9.3 for details. Superpositionof the
various contributionsthen gives what should be comparedwith experiments.However, what is the
weight for each contribution?This can be inferredfrom the barriers shown in fig. 7.1. The highest
barrier of the standardchannel is lower than the highest barrier of the superlongor supershon
channels.Hencewe concludethatthe standardchannelis muchmoreusedthanthe superlongchannel,,
andthisis in fact what is observed.However,wemustpoint out that ourbarrier heightsandwidthsare
not good enoughfor quantitativecomparison.However, qualitatively the barrier criterion agreeswell
with the observations,seesection8.3. Moreover,experimentaldatacan be analyzedso that the weights
are eliminated, and the numbersthus extracted,for example, the mean fragmentmasses,can be
comparedwith the computedones,see section7.2, in particulartable 7.1.

We stressthe role of the bifurcationpoints. They divide the flux to the various prescissionshapes,
and hencethey decide,in cooperationwith the barriers, the distribution of the exit-channelobserv-
ables.The systemof bifurcation points, the systemofbarriers andthe systemofprescissionshapesare
the new items of low-energy fission theory. “Low energy” since they are manifestationsof quantal
shells,which aresmearedout when excitation increases.

Without considerationof at least three degreesoffreedom,1, r and z, therearebut little prospectsto
predictanythingrelevantfor experiments.We needr to see when the fragments appear, we need I for
the averagetotal kinetic energyand we need z to computethe average mass of the fragments.
Moreover,as fig. 7.1 clearlyshows, it is evenimpossibleto disentanglethevariousfission channelsin a
two-dimensionalspace.For the quantitativecomparisonsto bepresentedin the next sectionsevenfive
degrees of freedom, as introduced in eq. (2.1), were employed.

7.2. Evidencefor superlong,standardandsupershort

Figures7.3 and7.4give surveysof the mostimportantexit-channelobservablesas theyvary with the
compound-nucleusmassnumber~ In fig. 7.3 the yield Y(A) and the total kinetic energyTKE(A)
areplottedas functionsof the fragmentmassnumberA. In fig. 7.4 the neutronmultiplicities i(A) are
shown.

Let usstart with a discussionof the experimentaldata, indicatedin thesefiguresby dots. The yield
from the fission of astatine(Acn = 213) is displayedin fig. 7.3 and is almost exactly what is called
liquid-drop fission: one broadhump centeredat masssymmetryA = ~Aen.The reasonfor liquid-drop
fissionis a highbarrier that is overcomeonly whenenoughexcitationenergyis pumpedinto thesystem.
This, on the other hand,destroysthe quantumshells. Only recently [7.3] small shouldersatA 140
and, of course,at the complementA 73 were discovered.This meansthat someshell effectsarestill
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Table 7.1
Comparisonof calculated(t) and measured(e) values of total kinetic energyTKE, averagemass AH of the heavy
fragmentand the standarddeviationso-,, of the massdistribution for variousfission channelsand variousnuclei. The
totalneutronmultiplicities i~still do not haveexperimentalcounterparts,but thereis evidencefrom somemeasurements
thattheycannotbe completelywrong: seefig. 7 in [5.27]for

227Ac andfig. 6 in [7.13]for theactinideswith A~,= 260.
The reactionsby which thenucleiwere fissionedcan belookedup in thereferencesquotedin the lastcolumn. Of course,
the specialfeaturesof thesereactionssuch as their excitation energieswere taken into accountwhen the calculations
weredone. Typical theoreticalerrorsare5 MeV for theIKE, threenucleonsfor theA H and25% for thecr~.The only
seriousdeviationsbetweentheoryandexperimentarethus r,~for thesuperlongchannelin 236U andthesuperasymmetric
channelin 252Cf. But while theformerobviouslyrestson aproblemwith theevaluation(seethecaptionof fig. 7.6), it is
theoreticalfailure that we cannot cope with the superasymmetricchannel.Two fermium isotopeswere included to
demonstratethat none of the observablesdisplayedin this tablechangesmuchwhen only onenucleonis added.Hence
thereis no risk in takingthecharacteristicsof nucleisuchas238U, 238Puand260Md from this table.Importantcompanion
tablesare 8.5, which containsthe theoreticalraw data neededfor this presentation,and table 8.6 with comparisons

betweencomputedand measuredTKE varianceso-~

Nucleus Channel IKE’ (MeV) TKEe (MeV) A~, A’H e 1 References

213At standard 153 147 133 137 5.4 3.9 2.3 [7.4,7.5]
superlong 148 146 108 107 7.6 8.9 4.9

227Ac standard 170 164 134 139 5.6 6.0 3.4 [5.27,1.10]
superlong 158 153 114 114 8.7 9.5 5.4

2321h standard1 176 168 135 135 4.1 3.6 2.5 [7,6]
standardII 168 158 139 143 5.7 4.3 3.1
superlong 155 153 116 116 9.2 5.7

236U standard1 186 187 135 134 3.4 2.6 2.0 [1.8]
standardII 176 167 141 141 5.9 5.0 2.9
superlong 150 157 118 118 12.9 4.1 7.3

240Pu standard1 192 192 136 134 3.9 2.8 2.0 [7.7,7.8]
standardII 184 175 141 140 5.5 5.7 2.8
superlong 156 120 12.2 7.3

252Cf supershort 226 126 1.8 0.1 [6.13]
standardI 205 200 137 135 4.6 3.2 2.5
standardII 194 188 147 143 6.1 5.0 3.5
standardIII 176 149 7.1
superasymm. 179 146 161 178 7.0 2.3 3.6
superlong 173 180 128 127 13.2 11.6 6.5

255Es supershort 226 131 3.1 1.1 [5.8]
standard 203 143 6.3 3.2

258Fm supershort 230 230 132 130 3.1 1.1 [7.9,1.11]
standard 207 205 145 6.2 3.0

259Fm supershort 231 235 130 130 2.6 1.2 [7.10]
standard 204 200 145 6.3 3.5

272[lo8l supershort 245 139 6.5 3.7 [7.16]

standard 194 155 19.2 7.7

alive when 213At fissions. However, observation of such shoulders becomes increasingly difficult when
Acn decreasesso that wemaylooselysaythat 213At is the lightestnucleusthat fissionsunderthe rule of
quantaleffects. When we go to examinethe yield of actinium, we find that both components,that at
symmetry and that at A 140, still exist, but their weight has changeddramatically.The asymmetric
componentis now as important as the symmetric one, and the trend continues.At ~ = 236 the



216 U. Brosa et a!., Nuclearscission

101 I I

TKE/MeV

:~~\J~

TKE/MeV

~ ::~/~
120 140 120 1404

•OJ6~~~:~
120 140 120 140

~:gk~IL~~140 160 140 160

12.0 TKE/MeV
6.0~ 259F

o.oF ~ 180[
140 160 4 140 1604

Fig. 7.3. The main examplesfor fission of preactinidesand actinides.Shownare theyields Y (left-handcolumn) and total kinetic energiesTKE
(right-handcolumn) as functionsof thefragmentmass numberA. Mass symmetry is alwayslocated at the left edgesof theviewports. Full dots,
sometimeswith error bars,representtheexperimentalresults.Therespectivequotationscanbe found in table7.1. The lines comefrom the theory,
which is explainedin thetext. The numbersit takesto construct theselines aregiven in thetables7.1 and 8.5.

symmetrical component has almost disappeared; we must use a logarithmic scale to make it visible. The
asymmetriccomponentalonedeterminesthe shapeof the yield. However,at still larger~ the trend
seemsto reverse.In the fission of einsteinium,quite a few eventsatsymmetrywere observed,andfor
259Fmthe centralcomponentis dominantagain.

Figure 7.3 indeedcontainsthe systematicsof the yields. Everythingin betweencan be obtainedby
smoothinterpolationof neighboringsystems.The yield of thorium, for example,is betweenthe yield of
actinium and uranium, andso forth. Similar statementshold for TKE(A) and i(A) in fig. 7.4.

In the whole rangeof preactinidesandactinidescertaincharacteristicsof the yield stayremarkably
stable.There is a symmetricalcomponentand one at asymmetry(A 140). Only their predominance
changes.Furthermore,thereseemto beonly two small sectionsof ~ wheredramaticvariationsoccur:
one at A~

6 227 and the otherone at ~ 257.
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Fig. 7.4. Systematicsof theneutronmultiplicities asfunctionsof thefragmentmassnumberA. Dots arefrom experiments,lines from theory.The
referencesto theexperimentalworks are: for 213At [5.24,5.25], for 227Ac[5.26,5.7], for 236U [7.12],for 252Cf [6.14]andfor 260Md [7.13].Themajor
partof thetheoreticalresultshavebeenpublishedpreviously; for thecases213At and227Acsee[3.12],for 252Cf [3.1,3.2], andfor 260Md [3.1]as well
as [7.13].Thepredictionfor theneutronmultiplicity of 232Thwill bediscussedin section8.4. Muchin this figure is alreadyhistory. For example,in
thepredictionfor 252Cf we couldnow achievemuchbetteragreementwith theexperimentaldataby taking thestandardsplitting into account;three
yearsagothis wasstill a too novel subject.

The centralcomponentsthat prevail in the preactinidesand in the heaviestactinides do not have
much in common [7.4]. This can already be recognized from the variances o~ of the central
components:for astatineY(A) it is broad, whereasit is narrowfor fermium. The differencebecomes
evenmore obvious when one studiesthe TKE(A) functions on the right-handside of fig. 7.3. For
astatinethe asymmetriceventsareelevatedoverthe symmetricalones.Oneappreciatesthe significance
of this fact all the more when one remembers that normally asymmetric events must have depressed
kinetic energiesdueto the well knownfactor Z(Zcn — Z) in the Coulomb repulsion, cf. eq. (4.10). The
energeticelevation becomesincreasinglypronouncedas A~

6increases.So we see for uranium the
famousdip in TKE(A) at symmetry,which was already alluded to in section7.1. If the symmetric
componentsfor light and heavyactinideswere of the samekind, we shouldalso expectthatthe heavy
actinidesproducea dip in TKE(A). However, the oppositeis true: TKE(A) hasfor einsteiniumits
maximumat symmetry,andfor fermiumweevenfind a peak.This erratic behaviorof TKE(A) cannot
be explainedby a single symmetrical fission channel. Instead, it is the superlong channel that is
productive in the lighter actinides (A~~~ 252). It producesevents at small total kinetic energyand
gives, in accordancewith randomneck rupture,broad massdistributions as discussedin section5.5.
And it is the supershortfission channeloperativein the heavieractinides (Acn� 252) that generates
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events with high TKE and narrow mass distributions. We shall also see in section 9.4 that the
microscopicstructuresof the superlongand supershortchannelsare different.

When the massdistribution Y(A) andthe total kinetic energyTKE(A) are expandedover the full
rangeof A, we seetwo Bactrian camelsfor~Uandtwo dromedariesfor 259Fm. Thiscorrespondenceis
misleadingsinceit suggeststhat Y(A) andTKE(A) containsimilar informationwhich is, of course,not
true as can be seenfrom the otherexamples in fig. 7.3. Y(A) of 236U tells us that there are few fission
events at mass symmetry.The value of TKE(A) of 236U, on the other hand, reveals that thesefew
events come with a very low total kinetic energy. Therefore, one can derive the existence of the
superlong channel from TKE(A), while a similar conclusion based on Y(A) is hard. Analogous
argumentshold for 259Fm: its yield shows only the supershortcomponent;contributions from the
standardchannelareswampedby statisticalnoise.However, the sharpdropof TKE(A) for increasing
A provesthe presenceof the standardchannel.

The lines of figs. 7.3 and 7.4 represent theoretical results from the joint efforts of random neck
ruptureand the quantum-mechanicalpotential-energycalculationswhich will be detailedin ch. 9. The
potential-energy calculations give us the prescission shapes(collectedin table8.5). Fromtheprescission
shapes,individual yields Y~(A),total kinetic energiesTKEC(A) and neutronmultiplicities i~(A)are
obtainedusingthe procedurescompiledin ch. 4. The subscriptc labels the various channels. Whenwe
wish to compare with measurements, we form the superpositions

Y(A) = ~ p~Y~(A), (7.1)

TKE(A) = ~ p,TKE~(A)Y~(A)IY(A), (7.2)

i(A) = ~ p~~(A)Y~(A)/Y(A), (7.3)

wherethe channelprobabilitiesp,~indicatehow much channelc is frequented.They are normalized as

(7.4)

All functions Y~(A),TKE~(A)and i~(A) are output of the proceduresof random neck rupture.
However, for information reductionone maywrite without loss of accuracy

YC(A) = 1/2 [exp(_ (A — A~)2)+ exp(— (A — ~ + A~2)] (7.5)

(27roAC) 2UA.C 2UA.c

and

A(A -A)
TKEC(A) = - 2 TKEC (7.6)

AC(ACn — AC) —

so that two functionsare definedby threenumbers:the averagemassAC, the massvarianceO~C and
the averagetotal kinetic energyTKEC. Randomneck rupturedelivers thesenumbersas byproducts.
They are quotedin table 7.1 and are equippedwith a superscriptt to indicatetheir theoreticalorigin.

The presenttheory of multichannelfission hasa weakness:while it seemssuitable to computethe
prescissionshapes,it cannotprovideaccuratevaluesfor the channelprobabilitiesp,~.The graphsin fig.
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7.3 were madeby taking the computedfunctions YC(A), putting them into (7.1) andadjustingtheP~
until the best fit to the experimentalyield was achieved.The thus obtainedp~are listed in table 8.5.
They must be consideredas experimentaldata.

The honestway of comparisonbetweentheoreticalandexperimentalitemsis presentedin table7.1.
The experimenterstaketheir data and fit themwith formulas essentiallyidenticalwith (7.1) to (7.6).
However,theykeepall the parametersfree for adaption.In this way theyfind experimentalvalues for
A~,~A,c andTKEC. The first state-of-the-artevaluationof this kind was madeby Knitter et al. [7.11].

With a small modification we can now repeatthe claim madeat the beginning of section3.1: the
exit-channelobservablesare slaves of the prescissionshapes.Now that we have understoodthis
principle by meansof the yield and the total kinetic energy, the neutronmultiplicities i(A) cannot
causeus anymajor surprises.

For 213At the prominentcontributioncomes,as we see in fig. 7.3, from superlong,that is from a
symmetricprescissionshape.Consequently,accordingto rule (2) of randomneckrupture(section3.1),
we expecta 13(A) that looks like an ascendingline; and this is what we see in fig. 7.4. The standard
componentis so weak that it was not seenin the classicmultiplicity measurements.

However, in 227Ac the standardprescissionshape is as often made for as superlong. Since the
standardshapeis asymmetric,we expectfrom it a sawtooth-shapedneutronmultiplicity; seeagainrule
(2) in section3.1. Moreover, as contributionsfrom the superlongchannelarestill large,we shouldsee
the sawtoothsuperimposedon an ascendingline. Fromaninspectionof thesuperpositionformula(7.3)
we learnthat the ascendingline shouldshow up at masssymmetrywhereasthe sawtoothshouldhaveits
domain at the outskirts; and this is what we see in fig. 7.4.

In 236U the standardprescissionshapegeneratesthe aforementionedcamelhumpsin the yield Y(A).
The humps are so close to each other that they almost swamp the small contributions from the
superlongchannel.13(A) lookslike a single sawtooth.However,thereis a meansto detectthepresence
of the superlongchannelevenin suchdifficult cases:oneplotsthe total multiplicity 13(A) + 13(A — A).
The total multiplicities aredistinguishedin fig. 7.4by the crosseswith opencircles. The corresponding
theoreticalline is broken. Now if eventsfrom the superlongchanneloccur, we observea steeprise in
the total multiplicity for A Aa,,!2. This is in accordancewith the randomneck rupturerule (1) in
section3.1. One can go one stepfurther andcomputethe channel-averagedtotal neutronmultiplicity

= ~ [13(A)+ 13(A~
6- A)]Y~(A). (7.7)

The multiplicity 13~from the superlongchannel is considerablylarger than that from the standard
channel

13st’ see table 7.1.
In addition, the neutronmultiplicity of 252Cf is dominatedby the standardchannel’ssawtoothcurve.

However, at very large asymmetriestwo new sawteethappear. This feature is producedby the
superasymmetricalprescissionshape[cf. fig. 3.id], which gives contributionsto the yield at very large
massasymmetriesandinducesa multiplicity 13~(A) that exhibitsan evenmoreprominentsawtooththan
standard.The propertiesof the superasymmetricfission channelwill be discussedin section8.5.

260Md fissions mainly through the standardand supershortchannels.Supershortis symmetrical;
henceit generatesa straight multiplicity curve. However, the total neutronmultiplicity ~ is small (cf.
table 7.1) since the supershortprescissionshapeis short. When we combine this with the sawtooth
shapefrom the standardchannel,we expecta rift at masssymmetry.Preciselythiscanbe seenin fig.
7.4.
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Neutron multiplicities 13(A), therefore, do not seem to contain information that exceedsthe
information obtainedfrom yield and total kinetic energy.This is quite a strongvalidation of random
neck rupture. Furthermore,the functions 13(A) are important for many practicalpurposes,but their
measurementis difficult eventoday. Thereforeit is useful that we have a theory to predict these
functions,typically with anaccuracyof oneneutron. In fact, much of thecalculateddatain fig. 7.4 is a
properforecast.For example,the threesawteethin 252Cf werepublishedfirst as computationalresults
[3.1]. Therift in the neutronmultiplicity of 260Md was computedbeforeit wasmeasured[3.1,7.13],and
it seemsthat for such an important fissioningnucleusas 232Th no measured13(A) is available.So we
thoughtit would be apt to haveat leasta prediction.

One can increasethe accuracyof the predictionsby taking thecharacteristicsof the prescissionshape
not from the potential-energycalculationsbut from the experimentalyield. This correspondsto the first
strategy discussedin section 4.2. Figure 7.4 was constructedin this way. Had we worked with
theoreticaldata only, we would haveobtainedthe samefeaturesas areshown now.

7.3. Channel-differentiatedTKE andAH systematics

The two most importantcharacteristicsof the mass and total kinetic energydistributionsare the
averagemassnumberAH of the heavy fragments and the averageTKE. Theoverall systematicsofTKE
is displayedin fig. 5.1. The overall systematicsof AH is so simple that it needsno graph: AH stays
almostconstantat 140 for fission of nearlyall the actinides.With the materialspresentedin fig. 7.3 and
table 7.1 we can nowestablishdifferentiatedsystematics,that is TKE andA~ for every fission channel
severed.The resultcan be seenin fig. 7.5. The featuresof the standardchannelareshownby the full
lines, the dashedlines arerelatedto the superlongchannelandthe supershortchannelis distinguished
by the dots.

Let usstartwith fig. 7.5b. The standardchannel,split into componentsI andII, stays quitecloseto
the dash-dottedline. But the dash-dottedline representsthe overall TKE systematicsso that we have
anotherreasonfor the naming of the standardchannel. Anticipating section8.4, we now state: the
standard II is the most bountiful channelin most actinides.Thereforeit is the proximity of standardII
to the overall TKE systematicsthat counts.The supershort channel gives,naturally, much too high
kinetic energieswhile the superlongchannel’sTKEs aremuch too low. Notice the convergenceof the
superlongTKE to the overall systematicsfor light systems.Thus for astatine,where the superlong
channelis prevalent,its characteristicsdo not deviatemuch from the liquid-drop behavior.

Figure 7.5c representsthe differentiatedsystematicsof the mean_massnumberAH of the heavy
fragments.We displayit by plotting the_light fragmentmassnumberAL as afunction of AH. (Clearly,
the systemsize ~ is given by AL + An.) As desiredby nature, the standardchannel,in particular
standardII, remainsnearly constantat A~ 140. The superlongand supershortchannelsenforce
symmetricalfission. Their AH appearthuson the diagonal.

What leapsinto mindwhenoneconsidersfigs. 7.5b, c is the smoothbehaviorof thesecharacteristics.
Fromthis it is inconceivablehowthe exit channelobservablescan changedrasticallyas is shownin figs.
7.3 and7.4. In addition,it strikesonethat the lines for the variouschannelsaredrawn only for limited
rangesof the systemsize.

Both questionscan be answeredwith fig. 7.5a. Therethechannelprobabilities~ for the threemain
fission channelsare depicted. This diagram tells us that for systemssmaller than A~

6 250 the
supershortchannel disappearsand the respectiveprobability p~6is zero. For systemslarger than

260 the superlongchannelbreaksup. The standardchannel,in contrast,existseverywhere.The
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Fig. 7.5. Channelprobabilitiesp~,meantotal kineticenergyTK.E andaveragemassnumberAH of theheavy fragmentsastheyvarywith thesize of
the fissioningsystem.The opendots arefrom measurementscompiledby Flynnet al. [7.14],exceptfor thesystems2°Atand227Acfor which the
relevantreferencesare [7.3—7.5]and[5.27],respectively.Note thatthis is a schematicpicture.We haveno precisemethodto computethechannel
weightsp~.They wereestimatedfrom theheightsof thecomputedbarrierscollectedin thetables8.2 to 8.4andfrom thefittedp~listed in table8.5.
To indicatethe lackof accuracy,the linesin part (a) areenclosedin different sortsof hatching.The otherpartsof thefigure appearedfirst in [7.15].
They werecomputedusingthe“liquid-drop-energyminimizationmethod”[variant(ii) in section9.2] andarethereforelessaccuratethanthevalues
given in table8.1. We decidedto makethejuxtapositionin orderto showthereliability of our searchingtechniques.

drasticchangeof the observablesis causedby the drastic variationof the populationprobabilitiesp,~.
This variation canbe relatedto the relativeheightof the barriers.We shalldiscussthe respectiveresults
in section8.3.

Enticed by recentdata from a heavy-ionreaction in which apparentlythe nucleus272[108] was
produced[7.16],we calculateda channelgraphlike fig. 7.1 for this systemandafew othersin the same
massrange. We saw no qualitative changesas comparedto systemslike 259Fm. The standardand
supershortchannelsstill exist. But their propertiesare somewhataltered.The supershortchannelis
quite long so that the supershortTKE systematicsapproachestheoverall TKE systematics,as shownin
fig. 7.5b. The standardchannel,for its part, becomesexceedinglylong andsogives rise to eventswith
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smallTKE. This is indicatedby the detachedpiecein fig. 7.5b. Correlatedwith the largelengthof the
prescissionshapeis a hugevalueof the standarddeviationUA, seetable7.1. But the standardchannel’s
asymmetryalso grows. This causesa meanmassnumberAH that deviatessubstantiallyfrom the 140
systematics,see in fig. 7.5c the pieceof line at AH 160. Thesetheoreticalresultshavenothingto do
with the data from the heavy-ionreaction reportedin [7.16]. The reasonis probably that in the
experimentsomethinglike a compoundnucleuswas never formed so that the observationsreflect
entrancechanneleffects.

7.4. The independenceoffission channels

Fromthe theoreticalpoint of view the existenceof severalfission channelsis provenby calculations
as describedin ch. 9. However, a sceptic who does not believe in theory might ask for direct
experimentalverification. After all, naturedoesnot alwayscomply with Gaussians,as in eq. (7.5), so
that the whole multichannelbusinessmight not be morethana fitting device. Stocker,for example,
showedthatthe somewhatangularshapeof the yield from uranium(seefig. 7.3) can be describedby a
Pólyadistribution [7.17].Similarly, the yields calculatedin thescission-pointmodelusuallydo not have
a Gaussianshape[1.4], and it makesno senseto claim that they arecomposedof Gaussians.

To makethe point clear: we do not considerthe Gaussian(7.5) to be more thanan approximate
representationof the yield from one fission channel, but the independentexistenceof the standard,
superlongand supershortchannels,and even the standardI/Il splitting (section 8.4) is proven by
experiments.

The most convincing evidence was obtained by Hambschand co-workers [1.8]. They studied
neutron-inducedfission of 236U at variousimpact energiesE~of the neutrons.It turnedout that changes
of En by a few eV could alter the overall TKE by half an MeV. Inspectionof the data revealedthat the
productionof fragmentsin certainmassrangescould be suppressedor enhancedby tiny changesof E

5.
An example is shown in fig. 7.6. Conjecturesthat such variations were relatedto the spin of the
compoundnucleusturnedout to bewrong. The scission-pointmodel,on theotherhand,is quite unable
to explainsuchdata:it mustattributeachangein the yield to a changeof temperature.Buta changeof
En by a few eV does not alter the temperatureof a fissioning nucleus. The only explanationof the
experiment[1.8]is a bifurcationpoint: somewherein the evolutionto fission, thenucleusmusthavethe
choiceto follow at leasttwo different trails, andthe decisionmustnot costenergy.Exactlythis point is
describedby channelgraphslike fig. 7.1.

1.5 Y(A,E~)/Y(A.~therm)

1.0’

0.5~E~~8.77~~

A
0.0- T’I’I’I’

80 100 120 140 160
Fig. 7.6. Shownis the ratio Y(A,E~)/Y(A, therm) of massyields from

235U(n, f) measuredat the neutronimpactenergyE, with total angular
momentumJ andparity ir, andatthermal impactenergies[1.8].The dip atA = 118 indicatessuppressionof fission throughthe superlongchannel
by 50%.Due to therepresentationby a quotient,onecannotdeducethewidth of thesuperlongcomponentfrom this figure. A morereliablewidth
is displayedin fig. 1 of [7.29].
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Similar evidence,but with very different methods,was obtainedby Hulet and co-workers [1.11].
They showedthat the addition of only oneneutronto a spontaneouslyfissioningnucleuscan drastically
changeits massandTKE distributions,see fig. 5.3. Again, as in the experiment[1.8], the changesin
the observablesaremuchtoo largein comparisonwith their causeas to be coveredby a scission-point
model. Here aswell, the only explanationis abifurcationpoint. The addition of the single neutronlifts
a certainbarrier close to that bifurcation point by a fraction of an MeV. This is enoughto makethe
respectivefission channelless attractive.We shall discussthe mechanismin section8.3.

The evidencepresentedin the figs. 5.3 and 7.6 refers to the existenceof the supershort,superlong
and,of course,the standardchannels.The first evidencefor the independenceof the standardI andII
channelswas presentedin [1.8]. Most beautiful in this respectis, however, the recentwork by
Wagemansand his colleagues[7.7,7.8]. They studiedthe isotopes236’238’240~242Puand demonstrated
that the addition of only two neutronsaffects very much the way in which fission drifts throughthe
standardI andstandardII channels.For this too wecan proposea theoreticalexplanation,seesection
8.4.

7.5. How can onesteernuclearfission?

Only whenwe canchangethings,arewe surethat we understoodsomething.So howcan weuse the
knowledgeon channelsto modify fission?

The most straightforwardway is to increasethe excitation energyof the compoundsystem.This
increasesthe probability that the nucleusoverridesnot only the lowestbut also thehigher barriers.The
most importantapplicationof thistechniqueis everythingconcerningthe superlongfission channel.As
can be seenin fig. 7.1, the barrierof the superlongchannelis higher thanthat of the standardchannel,
andthis is typical for all actinides.Thus we arenot surprisedwhenwe find in fig. 7.7 muchmoreyield
from the superlongchannel at the higher excitation energy. A behavior as shown in fig. 7.7 was
formerly interpretedas melting of quantalshells [7.18].Although such an interpretationis correctat
high excitation, it cannotbe true for the first few MeV wherethe destructionof BCSpairs tendsto
reinforcethe shells [1.7].

A moresubtle way to reshufflethe frequentationof the channelshasalreadybeendiscussedin the
previoussection: the various resonancesin neutron-inducedfission give different yields. But it is not
clear what it is in a fixed resonancethat gives rise to the observedyield. It remainsto find the true

switch. Furman and Kliman [7.19,7.20] demonstratedthe effect of the Bohr transition states
[7.21,7.22, 1.7] on the decisionatacertainbifurcation point. To understandthe argumentsof Furman
andKliman, it might bebestto envisagefissionin two stages:in the first one,the entrance,the neutron
is captured,the compoundnucleusformedandthe top of the channelbarrierclimbed— only onebarrier
is considered.In the secondstage, the exit, the nucleusdescendsand scissions.In otherwords, the
entranceconnectsthe resonanceA with the transitionstateJ’T K, while the exit joins J”~K with the
prescissionshapec. The total angularmomentumJ andthe parity ir aregood quantumnumbers.But
noneof the labelsA (resonancetag),K (projectionof angularmomentumon the body-fixedaxis) or c
(channeltag) expressesa conservedquantity.Hencethe only relationwe can expectis by probabilities.
Let PK,A denotethe probability that the nucleusgoesfrom the resonanceA to the transitionstateJ K.
Next takePc,K as the probability for the transitionfrom J’~K to c. Then accordingto probability theory
plus a Markovian assumptionwe must have

PC.A = PC,K PK.A. (7.8)
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Fig. 7.7. Massand total-kinetic-energydistribution Y(A,IKE) from Fig. 7.8. The channelprobabilityP~~ILj,Aasafunction of theentrance
photofissionof

532Th.In contrastto theyields Y(A) assembledin fig. probabilityPK-I,A The resultsfor thevariousresonancesA appearas
7.3we haveherea contourplot of theyield asafunction of fragment dots with error bars. The straight line displays the best linear fit
massnumberA andtotal kinetic energyIKE. Darkerregionscorre- [7.20].All these resonanceshave J~= 4~.They can only reachthe
spond to higher yield. The two heavy wings come from standard two statesK = I and K = 2. This makes evaluation of (7.8) very
fission. The eventsat symmetry(A= 116,TKE = 150MeV) areprod- simple because~ = 1 h-l.A On the left-hand side of (7.8),
uctsof thesuperlongchannel.E~denotesthe energyof theelectrons only the probabilities for fission through the standard I and II
that generatethe fission-inducing photons by bremsstrahlung.The channelshave been considered(seesection8.4). This is legitimate
difference betweenthe averageexcitation energiesis considerably since the contributionof the superlongchannelis tiny in 235U(n,f).
smallerthan4MeV, perhaps1 MeV. The datais taken from [7.6].

The Pc,A are the same channel probabilities as used in equations(7.1)—(7.4). They were only
customizedby A.

The probabilitiesp~andPK,A are known for 235U(n,f): the p~can be obtainedfrom fits of the
yield, as describedin section 7.2. Tables for 236U are given in [1.8]. The PK,A are derived from
interferenceeffectsin the energydependenceof the spin-separatedfission cross-section.Pertinentdata
arecollectedin refs. [7.23—7.25].However, we do not knowthe PC,K~Nevertheless,wecan checkeq.
(7.8) sinceit postulatesa linear relationshipbetweentheknownprobabilities.Sucha checkis shownin
fig. 7.8. The figure showsfirst that the Markovian assumptionseemsto be right. Otherwisethe Pc,K

would also dependon the resonanceA, and this would impair the linear dependence.Second,we see
that the channelprobabilitiesp~can in fact be changedif the transitionstateis altered.For example,
the probabilityPc=stI,A is 0.21 whenfission proceedsvia the state4~1. The sameprobability is only 0.19
when the state4~2 is passed.

It deepensinsight whenone appreciatesthe differencebetweenthe two probabilitiesPC,K andPK,A~

The randomnessdescribedby the entrancechannel probabilities PK,A is causedby the complex
multiparticle interactionswhich form the compoundstates. Strong Coriolis forcesthen mix several
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transition statesJ~r K into one compoundstateA [7.26].Therefore, we expectthe PK,A to depend
irregularly on bothindices.In contrasttheexit-channelprocessescan be figuredasthe propagationof a
wavepacketin the low-dimensionalspaceof deformations(think of our variables1, r, z, s, c, section
2.1). Thus only smoothchangesof thePc,Kwith K shouldoccur. In fact, onecan infer this from fig. 7.8:
with eq. (7.8) and the knowledge that only two intermediatestatesare involved we find Pc=stl,K=1 =

0.21 andPC=stI,K=2= 0.19, whereasPK=1,A actuallyvaries between0 and 1.
One mayevenpicture theseresultsif one acceptsa popular interpretationof the transitionstates

[7.22,p. 42]: stateswith negativeparity and odd K aresaid to suppressmassasymmetrywhile those
with negativeparity andevenK do theopposite.ThestandardI channelis themoresymmetricone(see
section8.4). Hence, it is plausiblethat it is morefrequentedwhenthe symmetry-friendlystate4 1 is
involved.

A fine discussionof the sametopic with somewhatdifferentemphaseswaspresentedby Moore and
co-workers[7.27].

The Markovianassumptionunderlyingeq. (7.8) amountsto the assertionthat it doesnot matterhow
a certain K is reached.Hence fission by gamma rays and other particles should reveal similar
regularitiesas those displayedin fig. 7.8. The first steps in this direction, involving a coincident
measurementof massand angulardistributions,were undertakenby Wilke et al. [7.281.

The quantumnumberK describespropertiesof a’ solid body. It is not cogentto associateit with
dynamicdeformations.If onewishesto affect the dynamicsat the bifurcationpoints,oneshouldrather
imposevibrationswith definite symmetry on the nucleus.This was recentlyachievedby Weberet al.
[7.29].The tool was inelasticelectronscatteringwith coincidentregistrationof the fragmentsand the
scatteredelectrons.In this way not only the energybut also the multipolarity of the excitation was
controlled.A typical resultis shownin fig. 7.9. For all multipolarities,theyield atsymmetrygrowswith
increasingexcitationenergy.This is the simpleeffect discussedin the contextof fig. 7.7, namelythat a
higher excitationenergyfacilitatespenetrationof the superlongbarrier. But the superiorinformationis
containedin the enhancedincreaseofthe superlongyieldwhenevengiantresonances(E2 and E0) are
excited. This againis plausible since the superlongchannel is a symmetrical channel,whereasthe
standardchannelis asymmetrical,see fig. 7.1.

In summary,we know nowadaysof threewaysto steerfission: by excitationenergy,by making for
transitionstateswith chosenK andby giant resonanceswith definite multipolarity.

_____ 1238u
5 0/0 El ~ E2JEO
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Fig. 7.9. Fissionof
238U by virtual photonsexcitingthe giant monopole (E0), dipole (El) and quadrupole(E2) resonances.The ratios Y~I~A of

yieldsat masssymmetryA= 119 andasymmetryA= 140 areshownasfunctionsof theexcitation energyE*. AroundA= 119andA= 140 suitable
masswindowswere setup. Detailscan be foundin [7.29]wherethedatais alsotakenfrom. The kink at E* = 12 MeV is relatedto second-chance
fission and hashenceno meaningfor thepresentsubject.Therefore,for thestraight-linefit, only thedatadistinguishedby thefull symbolswere
taken.
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8. Peculiarities of fission channels

8.1. The tree of nuclearfission

Today it is not a real problemto computethe potentialenergiesEdefof a deformednucleus.It takes
moreskill to extractinformationfrom such a high-dimensionaldataset. Clearly, the function Edef has
minima andsaddlepoints, but how aretheyconnectedto eachother?Oneway to seethis could be by
dynamics:oneshouldstarton oneof the saddles,pushthe nucleusin somedirection,andlook to which
minimum it moves. This would be feasible in calculationsonly, and eventhereit cannotbe done at
presentsince reliable enough inertial tensors are not available. One may, nevertheless,obtain
informationon the connectivityfrom the potentialenergyalone,namelyby pathsof steepestdescent.
This hasbeendonein mostof the work reviewedhere,andthe connectingpathsarenowcalled fission
channels.

Usually at thispoint nuclearpuristsstartto assertthatsuchpathshaveno meaningat all. They argue
that fission is adynamicalprocessso thatoneshould build a metric from the inertial tensor,derivenew
coordinatesbasedon that metric so that the inertial tensorbecomesdiagonal,anddisplaythe potential
energy in these coordinates. In other words, the potential energy must undergo a topological
transformationbefore it becomesusefulfor interpretation.As long as this transformationis not known,
only thosepropertiesof the potential energymust be taken seriouslythat remain invariant under
diffeomorphic transformations.The minima andsaddlepointsareinvariants,but the pathsof steepest
descentchange.As an exampleone usuallyquotesa certainsectionfrom Wilet’s booklet [3.3, section
3.3.1] whereit is actually shown thatan appropriatetransformmakesa valley into a ridge.

While all theseargumentsare correct, theydo not apply to the properproblem. In fact, chemistry
usessimilar proceduresas modernfission theory to computethe various reactionpathsof a chemical
system.Thesamediscussionas in nuclearphysicswent on in chemistry,but was solvedthereatleast12
yearsago, see the book by Mezey [8.1] and the referencestherein. The relevantline of argumentis
short enough. Nobody is really interestedin valleys. What one needsare low-energy connections
betweenthegroundstate(aminimum) andthe isomericstate(the so-calledsecondminimum),between
the isomericstateandthe barrier (asaddlepoint), andbetweenthe barrierandthe prescissionshape(a
minimumat the boundaryof the deformationspace).The connectingpathsbetweeninvariantpointsare
known to be homotopically equivalentor, in the more general case, they belong to one of the
homotopyclasses[8.1]. In popular terms,all connectionsdiffer from the dynamicalpathjust by some
bulges.So it is quite fair to selectoneof the paths,for example,thatcomputedby steepestdescent,as a
representative.

Of course,onemustnot drawconclusionsfrom geometricalpeculiaritiesas for examplethe big loop
in fig. 7.1. On theotherhand,it is not correctto claim that lack of topologicalinvarianceinvalidatesthe
pathscomputedfrom the potentialenergyalone.With thesereactionpaths,the questionsthat maybe
answeredare like this: “Which barrierbelongsto which prescissionshape?”The answersarevaluable
enoughsince the heightof the barrier affectsthe probability by which the specific prescissionshapeis
reached.Anotherexample:bifurcation points are generallynot invariant.However, the positionof a
bifurcation is bracketedby two stationarypoints. Henceone can say whethertwo reactionpathshave
two barriers, eachone for its own, or just a commonone.

It might be beneficialto havea skeletondiagramwithout geometricalpeculiarities.Find a Cayley
tree in fig. 8.1. Justthe minima appear(0), thebarriers(x), the bifurcationpoints(S), theprescission
shapes(+) andtheir connections(heavylines).
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Fig. 8.1. Cayley treeof nuclearfission. Emphasizedaredistinguishedpointsof the potentialenergyasminima 0, barriersx, bifurcationpointsI
andprescissionshapes+. An attemptwasmadeto give to this picture,whichis to display topological relations,alsosomequantitativecorrectness.
For example, thestandardII prescissionshapeis longer thanthatof thestandardI shape.Thebiggestshortcomingis thepositionof thesupertong
barrier,which has muchless elongationthanthis figure suggests.

Comparefig. 8.1 and fig. 7.1. Californium would start to fission from the deformedgroundstate
(gs), surmountthe first standardbarrier, passthe secondminimum (2nd mm) and the bifurcation
points,overcomethe secondstandardbarrier,andruptureat the standardII prescissionshape.At the
bifurcation points, and nucleusmight decide to enter the supershortor superlongchannelsand to
ruptureratherat the supershortor the superlongprescissionshapes.Accordingto our calculations,a
specialrole is played by the deformedground state: it is at the sametime the minimum and the
bifurcation point to the superasymmetricchannel.

Figure 8.1 hasmost similarity with the (z, 1) projection in the bottom-left part of fig. 7.1. So
downwardmotion in fig. 8.1 meansan increaseof semilength1, while motion to the right refersto the
growth of asymmetryz.

Figure 8.1 is intendedfor generalusein low-energyfission. It containsa few featuresthat do not
showup in fig. 7.1. Thereis, for example,no sphericalgroundstatein californium. Thereis, however,
a splitting of the standardchannelinto standardI, standardII andperhapsevenstandardIII (ordered
with respectto asymmetry).Furthermore,no standardsecondarybarrierscan be seenin fig. 7.1. It
seemsthat theymatteronly for nuclei lighterthancalifornium. Finally in fig. 8.1, the secondminimum,
the supershortbifurcation, the superlongbifurcation andthe secondstandardbarrier areshownto be
sequential.But in fig. 7.1 the superlongbifurcation point occursonly after the secondstandardbarrier.
The situationshownin fig. 8.1 is neverthelessmoretypical. In the heaviestactinides(e.g. fermium) the
secondminimum and the supershortbifurcation point coincide. By contrast,in the lighter actinides
(e.g. uranium) the superlongbifurcation point coincideswith the secondminimum.

For differentnucleidifferentbranchesof the Cayley treethrive. Fornuclei as light as polonium,the
sphericalground state is relevant. The supershortandsuperasymmetricalchannelsdo not exist. In
heavynuclei suchas fermium,the sphericalgroundstateis not available,while all the channelsapart
from superlongseemto be present.
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Besidessheernonexistence,a fission channelmaybecomeinaccessiblewhen its barrier is too high.
In californium, for example, the supershortchannel does exist. But its barrier is so high that
comparativelyfew eventswill fission through it. Likewise, the superasymmetricchannelcan produce
only a very small yield.

Thequantitativesupplementof Cayley treeslike fig. 8.1 aretables.In thesetables,the distinguished
shapesand their energiesare recorded.The energiesareall calculatedusing Strutinsky’s well known
procedure[1.2]. Computationaldetailswill be given in ch. 9.

See,for example,the computedground statesin table 8.1. For eachnucleus,its coordinatesin the
five-dimensional space of deformations as introduced in section 2.1 are listed. In addition, the
computedand measuredbinding energiesEgs are compared.The comparisonreflects the accuracyof
Strutinsky’smethod:around1 MeV. Furthermore,it is noteworthythat thetransitionfrom the spherical
to the deformedgroundstates(cf. fig. 8.1) occursaboutwhereit is expected,namelynot too far away
from lead. One can localize the transition by the jump of the semilength values from l 7.3 to
/ 9.0fm. The nuclei close to uraniumhavethe celebrateddiamond shape,perceptibleby the large
negativevaluesof the curvatureC; the diamondsroundout in the heaviernuclei. In the region where
the changefrom sphericalto deformedgroundstatesoccurs,notably in the actinium isotopes,we find
largeoctupoledeformations,identifiable by the largevaluesof the asymmetrycoordinatesz ands. This
too is a knownfeature [8.2—8.4].

Tableslike 8.1 are knownfor a long time [8.5, 8.6]. However, we needthis one sinceseveralother
tablesare basedon it. For example,barrier heightsare written as excessesover Egs.

The coordinatesandheightsB55 of the standardbarrier arepresentedin table8.2. Comparisonwith
expe;imentalvaluesdemonstratesagainagreementwithin the limits of Strutinsky’s method.Note the
muchworse barriersin fig. 7.1. The differencearisesfrom the use of differentshaperepresentations.
For fig. 7.1 we took the three-parametrization(2.14),whereastable8.2 was establishedwith the more
flexible five-parametrization(2.1).

All nuclei listed in table 8.2havea double-humpedstandardbarrier,seefigs. 7.1 and8.1. Table 8.2
presentsonly the higher one. In the lighter nuclei, the secondhump dominates.It is locatedat larger
values of 1=12.6,...,11.3fm. The first hump (1=10.1,...,10.7fm) excels in the heavier nuclei.
That suchan exchangeoccurs,is beyonddoubt. However, the precisepoint in the periodic systemis
debatable.For comparisonwe contrastour resultswith thosequotedin [8.7] (where1st and 2nd are
calledA andB). It appearsfrom table8.2 that ourexchangeoccursat too largemassnumbers.This is a
weaknessonehasto face in all computationslike this: the limited accuracyof theStrutinskymethodis
badenoughto shift the pointwheretwo energiesareequalquite a distancethroughthe periodic table.

Again, tableslike 8.2 havebeenpreviouslypublished,see,for example,[8.5], but we alsoneedthis
one for reference.

Table 8.3 is new; a list of superlongbarriers.Its best featureis probably the uniquecompilationof
experimentalsuperlongbarriersthat we owe to H. Nakahara[8.11].The computedvalues do not seem
to be badeither.Only aroundthoriumdo the theoreticalandexperimentalvaluesdisagree.The shift of
the superlongbarrier to largervaluesof / with increasingmassnumberis striking. This is oppositeto
the behaviorof the standardbarrier. We give no superlongbarrier for the heaviestnuclei, although
eventhererudimentsof the superlongchanneldo exist. However,wefound no low-energyconnection
betweenthe barrier and the superlongprescissionshapeand thereforejudgedthat in nuclei such as
fermiumno superlongchannelexists [5.9]. We shall discussdatafrom table8.3 in section8.3.

Becauseof thoserudimentsit is fair to saythat the superlongchannelis “broken” in the heaviest
nuclei. In contrastwe do not seethe slightestvestigeof the supershortchannelin nucleimuch lighter
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Table 8.1
Groundstates,characterizedby computedshapeparameters1, r, z, c,s andenergiesE~,.The
shape parametersare introduced in eq. (2.1). They are turned into shapesaccording to
equations(2.3) and (2.9—2.13). Experimentalbinding energiesE’~,aretaken from [4.6]. The
table also lists all the nucides for which we examinedthe fission channels.Details of the

computationareexplainedin ch. 9

Nucleus ! (fm) r (fm) z (fm) c (fm) s (fm) E~,(MeV) E, (MeV)
210Po 7.3 7.3 0.0 —7.2 0.0 1644.4 1645.2

213At 7.3 7.3 0.2 —7.2 0.1 1659.2 1659.3

225Ra 7.4 7.5 0.1 —7.2 0.1 1724.4 1725.2
227Ra 7.3 7.5 0.1 —7.2 0.1 1735.3 1736.2

226Ac 8.8 7.2 1.1 —8.2 0.5 1728.8 1730.2
227Ac 9.0 7.2 1.0 —8.1 0.3 1735.6 1736.7
228Ac 9.0 7.1 0.5 —7.8 0.2 1740.9 1741.8

2321h 9.1 7.1 0.3 —7.5 0.1 1765.9 1766.7

233Pa 9.1 7.2 0.0 —8.0 0.0 1771.6 1772.0

236U 9.1 7.1 0.6 —7.7 0.2 1789.6 1790.4

234Np 9.1 7.1 0.7 —7.8 0.2 1775.0 1776.0
236Np 9.1 7.1 0.6 —7.4 0.2 1787.6 1788.7
239Np 9.2 7.1 0.5 —7.6 0.2 1806.5 1807.0

236Pu 9.2 7.2 0.1 —7.9 0.1 1787.3 1788.4
238Pu 9.1 7.1 0.2 —7.2 0.1 1800.3 1801.3
240Pu 9.1 7.1 0.3 —7.2 0.1 1812.7 1813.5
242Pu 9.0 7.1 0.0 —7.3 0.0 1824.5 1825.0

240Am 9.0 7.1 0.2 —6.6 0.1 1810.2 1811.3
243Am 9.0 7.1 0.0 —6.4 0.0 1829.5 1829.9
245Am 9.0 7.1 0.3 —6.6 0.1 1841.0 1841.3

242Cm 9.1 7.1 0.1 —6.4 0.0 1822.2 1823.4
244Cm 9.1 7.1 0.0 —6.5 0.0 1835.1 1835.9
248Cm 9.1 7.1 0.3 —6.4 0.1 1858.9 1859.2

252Cf 8.9 7.1 0.1 —4.8 0.0 1881.3 1881.3

255Es 8.8 7.1 0.1 —5.6 0.0 1898.0 1896.7

256Fm 8.8 7.1 0.0 —5.6 0.0 1903.4 1902.6
258Fm 8.8 7.2 0.1 —5.7 0.0 1914.8
259Fm 8.7 7.1 0.1 —5.2 0.0 1919.8

259Md 8.8 7.2 0.1 —5.5 0.0 1918.8
260Md 8.7 7.2 0.1 —4.7 0.0 1924.1

258No 8.8 7.2 0.1 —5.3 0.0 1911.9 1911.2
260[104] 8.7 7.2 0.1 —5.3 0.0 1918.6 1918.2

272[l08] 8.6 7.3 0.2 —2.7 0.0 1982.8

thancalifornium. The characteristicsof the supershortbarrier are listed in table 8.4. The supershort
barriersarelower than the higheststandardbarriers,exceptfor californium, sincein theseheavynuclei
the first standardhump is dominant. The secondhump, however,still exists. Its featuresare also
collectedin table 8.4. We shall take advantagefrom this juxtapositionin section8.3.

Barrier tables can be novel when hitherto unknown barriers are produced. But table 8.5 of
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Table 8.2
StandardbarriersB,,, otherwisesimilar to table 8.1. Experimentalvalues (e) stemfrom [8.7

]

Nucleus I (fm) r (fm) z (fm) c (fm) s (fm) B, (MeV) B,~(MeV)
210Po 12.4 4.2 3.1 4.7 —1.2 23.8 (2nd) 24.4

23M 12.6 3.9 2.6 6.0 —1.5 20.8 (2nd) 19.8

225Ra 11.2 5.2 3.1 1.4 —0.4 8.1 (2nd) 6.5 ±0.5
227Ra 11.2 5.4 2.9 0.9 —0.4 7.4 (2nd) 8.0

226Ac 11.3 5.3 3.1 0.8 —0.4 7.8 (2nd) 8.0
227Ac 11.3 5.3 2.9 1.0 —0.3 7.3 (2nd) 7.3
228Ac 11.3 5.4 2.8 0.6 —0.4 7.5 (2nd) 7.2

232Th 11.2 5.4 2.9 0.5 —0.4 7.2 (2nd) 6.2±0.2 (2nd)

233Pa 11.3 5.4 2.8 0.8 —0.4 7.6 (2nd) 6.1 (1st)

2~5U 11.3 5.0 3.0 1.8 —0.9 6.7 (2nd) 5.6 ±0.2 (1st)

234Np 11.6 5.2 2.9 1.1 —0.6 6.5 (2nd) 5.5±0.2 (1st)
236Np 11.2 5.3 3.2 0.8 —0.5 6.6 (2nd) 5.8±0.2 (1st)
239Np 11.3 5.3 3.2 0.9 —0.6 7.3 (2nd) 5.9±0.2(1st)
238p 11.6 5.3 2.8 1.0 —0.5 6.4 (2nd) 5.5 ±0.2 (1st)

240Pu 11.2 5.3 3.2 0.8 —0.6 7.0 (2nd) 5.6±0.2 (1st)

240Am 11.4 5.3 3.2 0.8 —0.5 7.2 (2nd) 6.5 ±0.2 (1st)
243Am 11.4 5.3 3.2 0.8 —0.5 7.4 (2nd) 5.9±0.2(1st)
247Am 11.3 5.4 3.0 0.8 —0.5 6.8 (2nd) 5.9±0.2 (1st)

242Cm 10.5 6.5 0.3 —3.5 0.0 6.6 (1st) 5.8 ±0.4 (1st)
244Cm 10.4 6.5 0.5 —3.0 0.2 6.7 (1st) 5.8 ±0.2 (1st)
248Cm 10.2 6.5 0.3 —1.9 0.0 6.5 (1st) 5.7 ±0.2 (1st)

252Cf 10.1 6.6 0.0 —2.2 0.0 6.9 (1st) 5.3 (1st)

255Es 10.4 6.5 0.5 —2.2 0.1 7.5 (1st)

256Fm 10.3 6.6 0.4 —2.8 0.1 7.4 (1st)
258Fm 10.4 6.5 0.5 —2.3 0.1 6.8 (1st)
259Fm 10.6 6.5 0.4 —1.8 0.1 7.3 (1st)

259Md 10.5 6.8 0.3 —3.9 0.1 6.9 (1st)
270Md 10.7 6.6 0.2 —2.2 0.0 7.2 (1st)

258No 10.6 6.8 0.4 —4.1 0.1 7.4 (1st)
2601104] 10.5 6.8 0.3 —4.2 0.1 7.2 (1st)

2721108] 10.6 6.8 0.3 —4.1 0.1 5.5 (1st)

prescissionshapeseven introducesa new concept.Prescissionshapesare extremaof the potential
energy too, but in general they are not stationarypoints as they are located on the border of
deformationspace.We fix this borderby theradiusr of the neck: r> 1.5 fm is the conditionfor a shape
to lie within the deformationspace.As soonas the radiusbecomessmaller,we assumethat ruptureis
finishedandfragmentsareborn.We do not needthisconditionfor mostsuperlongprescissionshapesas
we find them in minima (4th mm in fig. 7.1). Seesection 9.3 for a justification.

Table 8.5 is the foundationof most of the results involving randomneck rupturein low-energy
fission. This table containsthe raw data for the computationof yields and total kinetic energiesas
presentedin the sections7.2 and 7.3. They will oncemoreprove their usefulnessin section8.2. Table
8.5 presentsthe geometricaldata of the prescissionshape(/, r, z, c, s) andthe energyof descentEdes
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Table 8.3
SuperlongbarriersB,

1, otherwisesimilar to table 8.1. Most experimentalvalues are quite new. They are
referencedin the last column. This table containsa few predictionsconcerning important nuclei. For
example,no experimentalvalueof the superlongbarrierof uranium seemsto be known. Thereis databy

Straedeet at. {eq. (3) in [8.12]}, but it is not sufficient

Nucleus I (fm) r (fm) z (fm) c (fm) s (fm) B~(MeV) B,’1 (MeV) Reference
210Po 11.4 5.1 0.0 1.9 0.0 21.6 21.3 [8.8]

253At 11.4 5.1 0.1 1.3 0.0 18.8 17.2 [8.8]

225Ra 12.2 5.2 0.4 —0.5 0.0 12.6 6.7 ±0.5 [8.9]
227Ra 11.8 5.2 0.1 —0.1 0.0 13.0 9.0 [8.9]

226Ac 12.1 5.3 0.2 0.0 0.0 11.6 9.2 [8.9]
227Ac 11.8 5.2 0.2 —0.1 0.0 11.2 8.4—8.5 [8.8,8.9]
228Ac 11.8 5.2 0.6 —0.3 0.0 12.2 9.2 [8.9]

232Th 12.7 5.6 0.0 0.0 0.0 11.8 8.5—8.7 [7.6]

233Pa 12.6 5.5 1.3 —1.7 0.0 11.6 9.0 [8.11]

23~U 12.4 5.5 0.7 —1.3 0.0 10.9

234Np 12.6 5.5 1.0 —1.8 0.0 9.7 6.8 [8.11]
236Np 12.5 5.5 0.7 —1.8 0.0 10.4 7.4 [8.11]

239Np 12.4 5.5 0.5 —0.9 0.1 10.2 8.2 [8.11]

238Pu 12.5 5.5 1.0 —1.2 0.2 9.0 7.6±0.2 [8.11]
240Pu 12.5 5.5 0.6 —1.2 0.0 9.2

240Am 12.5 5.5 0.7 —1.4 0.0 9.0 8.7±0.2 [8.11]
243Am 12.5 5.5 1.0 —0.8 0.0 8.7 8.4±0.2 [8.11]
245Am 12.5 5.6 0.7 —0.7 0.0 8.7 8.5 ±0.2 [8.11]

242Cm 12.5 5.5 1.0 —1.3 0.0 7.5 8.0±0.4 [8.11]
244Cm 12.5 5.5 0.9 —0.9 0.1 8.0 8.1 ±0.2 [8.11]

252Cf 12.6 5.5 0.0 0.6 0.0 7.5

defined as the difference between the potential energiesof the ground state (table 8.1) and the
prescissionshape.Notice that it costsenergyto put astatineinto its prescissionshapes,whereasin all
othernuclei energyis gained.Table 8.5 is incompletein so far as it lists the standardI andstandardII
prescissionshapesonly for nucleiaroundplutonium.StandardI/TI splitting is in fact mostprominentin
the plutonium isotopes.Nevertheless,sample calculations suggestthat the splitting also exists in
astatine,actinium and einsteinium. The table is overcompleteas it containschannelprobabilitiesp~.
We explained in section 7.2 how they were obtained. They will be helpful to judge the relative
importanceof the variousprescissionshapes.

8.2. Kinetic energyfluctuations

As a first application of the tables8.1 to 8.5 we wish to computeTKE fluctuationsin low-energy
fission. The procedurerestson the formulas derivedin section6.3; see section6.4for atutorial. Only
the quantitiesthat entereqs. (6.34)haveto be fixed with somecare, as 10 MeV is nowa largechunkof
energy.

We obtain i~Ufrom (6.7). Edes can be readfrom table 8.5 and the relevantbarrier B from tables
8.2—8.4. The semilength1 at rupturecan be takendirectly from the prescissionshapetable 8.5. The
length of descentL~l is simply the differencebetweenthe I which can be found in table 8.5 andthe
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Table 8.4
Supershortandsecondstandardbarriers.The table is organizedas table 8.1

Nucleus Barrier I (fm) r (fm) z (fm) c (fm) s (fm) B’ (MeV)
252Cf supershort 12.6 3.8 0.0 11.1 0.0 6.6

standard(2nd) 12.0 5.5 2.8 0.6 —0.3 5.7

255Es supershort 12.4 4.4 0.1 10.8 0.0 5.2
standard(2nd) 11.8 5.5 2.6 0.9 —0.3 5.4

256Fm supershort 11.7 5.2 0.1 6.5 0.0 3.8
standard(2nd) 12.0 5.5 2.8 0.4 —0.3 4.4

258Fm supershort 11.7 5.2 0.0 6.5 0.0 3.2
standard(2nd) 12.0 5.5 2.7 0.6 —0.4 4.0

259Fm supershort 11.7 5.3 0.1 5.8 0.0 2.9
standard(2nd) 12.2 5.4 2.9 0.7 —0.5 4.1

259Md supershort 11.8 5.1 0.0 7.5 0.0 2.9
standard(2nd) 12.3 5.4 2.9 0.7 —0.5 3.1

260Md supershort 11.7 5.2 0.0 6.5 0.0 2.4
standard(2nd) 12.0 5.5 2.9 0.5 —0.4 3.2

258No supershort 11.8 5.1 0.0 7.3 0.0 2.9

standard(2nd) 11.9 5.6 2.3 0.6 —0.3 2.7
260[11M] supershort 11.5 5.5 0.1 4.5 0.0 1.4

standard(2nd) 12.4 5.4 2.9 0.5 —0.5 1.2
2721108] supershort 12.5 5.4 0.2 4.3 0.0 —2.6

standard(2nd) 12.9 5.5 2.3 0.8 —0.6 —2.0

respectivebarrier tables8.2—8.4. For example,zXl for superlongis the prescissionI of superlongminus
the I of thesuperlongbarrier. But becarefulwith thelengthsof descentfor the standardchannels:first,
both standards,I and II, have the samemain barrier since they fork only after the secondstandard
barrier (seefig. 8.1). The differencesin ~/ are causedonly by the different lengthsof the prescission
shapes.Second, the “standard secondarybarriers” (cf. fig. 8.1) are neverprominent structures.In
contrast, the secondstandardbarrier is always high enough to withhold a nucleusfor some time.
Therefore,free sliding startsbeyondthe secondstandardbarrier evenif the first barrier is somewhat
higher. You can find the secondstandardbarrier data either in table 8.2 or table8.4.

The Coulombrepulsions~ comeout as byproductswhenthe total kinetic energiesTKEt of table
7.1 werecomputed:one justhasto subtractthe nuclearattraction(4.13) to obtainthe pure ~ This
meansthat massfluctuationswere takeninto account.See,however,section6.4 for a simpler recipeto
get V~

0,,.
Inserting thesevalues into (6.34) producesthe TKE deviations o-~in table 8.6 where they are

comparedwith the experimentalresultso~.

Agreement is agreeableespeciallyin the central region with nuclei ranging from thorium to
einsteinium.Note, in particular,that the superlong

0E do not differ muchfrom the 0E of the standard
channel,both in experimentand theory. This is in markedcontrastto the behavior of the mass
deviationso~in table7.1. Due to the simplicity of our theory,we can explain thisfact: the dominating
term in (6.33) is ~ It containsthe factor V~

01, ~l/l. Now V~0,,/lis relatively large in the standard
channel,but its ~l is quite small. In superlong,however,LX1 is large,but V~0~/lis so small that it partly
compensatesfor the size of L~l.

Seriousdiscrepanciesoccur for the standardchannelof fermiumandfor the lightestsystemsastatine
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Table 8.5
Prescissionshapes.Ed,,denotestheenergyliberatedon descentfrom thegroundstateto sci.ssion.For reasonsdiscussedin section
9.1 we guessthat thecomputedvalues E’d,, aretoo large, in particularfor theheavynuclei. The channelprobabilitiesp were
obtainedeitherfrom themassdistributionsshownin fig. 7.3 asdescribedin section7.2 or from thereferencesquotedin the last

column

Nucleus Channel l (fm) r (fm) z (fm) c (fm) s (fm) E’d,, (MeV) p,~(%) References
2°At standard 15.2 1.5 2.1 12.4 —1.7 —15.6 0.8 fig. 7.3

superlong 17.5 1.5 0.5 12.5 0.1 —6.3 99.2

227Ac standard 15.6 1.5 1.1 11.8 —1.5 5.8 46 fig. 7.3
superlong 18.2 2.2 0.0 7.2 0.0 6.9 54

232Th standardI 15.5 1.5 0.2 20.2 —1.6 9.6 29.2 [7.6]
standardII 16.3 1.5 0.3 13.4 —1.6 8.8 69.6
superlong 19.4 2.1 0.0 5.4 0.0 7.2 1.2

236U standardI 15.4 1.5 0.3 22.5 —1.3 12.7 16.9 [7.11]
standardII 16.4 1.5 1.3 16.0 —1.4 14.8 83.0
superlong 21.2 1.8 0.0 5.2 0.0 15.2 0.1

24op~ standardI 15.8 1.5 0.6 21.0 —1.1 16.8 26.2 [7.7]

standardII 16.6 1.5 0.3 17.2 —1.7 18.7 73.8
superlong 21.4 1.9 0.0 4.4 0.0 23.1

252Cf supershort 14.3 1.5 0.0 31.2 0.0 12.4
standardI 16.6 1.5 —0.4 18.5 —1.2 23.6 8.5 [6.13,6.14]
standardII 17.5 1.5 0.8 18.3 —1.4 29.1 62.0
standardIII 27.7
superasymmetric 18.2 1.5 4.2 12.0 —1.7 18.3 0.5
superlong 21.0 2.6 0.3 2.5 —0.1 27.8 1.3

255Es supershort 14.9 1.5 0.1 23.4 —0.2 19.0 13 fig. 7.3
standard 17.2 1.5 0.3 12.3 —1.3 24.3 87

258Fm supershort 15.0 1.5 0.2 22.4 —0.1 22.5 50 [8.13]
standard 17.2 1.5 0.2 12.1 —1.3 26.6 50

259Fm supershort 14.9 1.5 0.0 18.1 0.0 24.7 73 fig. 7.3
standard 17.6 1.5 0.2 11.2 —1.4 28.5 27

272[108] supershort 17.4 1.5 0.3 8.1 —0.2 61.7
standard 22.7 1.7 0.8 5.7 —1.7 67.9

and actinium. The disagreementin the light systems,by the way, still reflects the reasonfor the two
casesin eq. (6.14): hadwe fixed E~= K

5 = 0.25 i~Ufor all systems,similar differenceswould alsoshow
up in uranium. This exhibitsthe fact thata two-stepfunctionsuchas (6.14) is too primitive andthat a
continuousvariation of E~IA U and K5IAU with massnumberAen is desirable.

Lazarevestablisheda systematicsof TKE variances[8.15,8.16]: at first they grow smoothlywith
systemsize,from o~ 60 for A 230 to o~ 130 for ~ 250. Then,suddenly,for somefermium
isotopes,o~as large as 600 are reached.Especially those nuclei, aboutwhich we know that the
standardand supershortchannelscontributewith aboutequal rates,give the largest values,namely258Fmand 259Fm.

Whenwriting his paperLazarevhadno ideaon multichannelfission. Hencehe gaveonly the total
TKE variances.If they comefrom two contributors,say the standardchannelwith probabilityp

5~and
the supershortchannelwith ~ the superpositionformula is

= PS,o~,,,+ p,5o,,~+ p,5p,~(~t~I~55— tk~,5)
2. (8.1)
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Insertion of values takenfrom the tables7.1, 8.5 and 8.6 typically deliverso~ 220 for the heaviest
actinides.This aimsin the right direction,but it is still too small. However,it seemsthat Serdyukand
co-workers[6.10]havesolvedjust this problemby a more realistic and thus morecomplexmodel.

8.3. Thesuperlongand the supershortbarriers

The nextapplicationof thetables8.1to 8.5is to understandthe behaviorof thechannelprobabilities

as shown in fig. 7.5a. So why is superlong’s~ dominant for light nuclei while it dwindles with
increasingA~ And why is supershortneverable to pushstandardinto oblivion? Thesequestionscan
be answeredby the height of certainbarriers.

However, first the relationsbetweenthe bifurcationpoints andthe barriersmust be clear. Imagine,
for simplicity, only two fission channels,one bifurcation point and several barriers which may be
positionedbefore or behindthe bifurcation, cf. fig. 8.1.

Table 8.6
Fluctuationsof the total kinetic energyin low-energy fission. This table is organizedastable 6.1: asinput we needthe excitation energyE~at
scission,the CoulombenergyV~

0~of repulsionbetweenthenascentfragments,thepotential-energydifference~U [itsrelation to E0~,is given by
eq. (6.7)], thedistanceof descentt~landthe semilengthI of theprescissionshape. Valuesof u~with a= symbolwere found by interpretationof
measureda-~(A)functions, seethat in fig. 8.7. For example,o-F(A= 140) wastakenas theIKE deviationo”~in thestandardchannel.The other

values were determinedby deconvolutionof data (seesections7.2 and 8.5). They are more accurate

Nucleus Channel E~(MeV) ~ (MeV) XU (MeV) ~l (fm) 1 (fm) u~(MeV) cr~(MeV) References
213At standard 10.0 183 5.2 2.6 15.2 11 =6 [7.4]

superlong 14.7 172 12.5 6.1 17.5 15 =7

227Ac standard 15.8 201 13.1 4.3 15.6 13 7 [5.27]
superlong 13.7 181 18.1 6.4 18.2 12 =8

232Th standardI 9.2 208 16.8 4.3 15.5 10.3 9.6 [7.6]
standardII 8.9 197 16.0 5.1 16.3 11.3 7.7
superlong 6.5 175 17.2 6.7 19.4 9.8 9.4

236U standardI 7.3 219 19.2 4.1 15.4 9.0 8.1 [7.11]
standardIl 8.1 205 21.3 5.1 16.4 9.5 7.6
superlong 8.2 168 21.7 8.8 21.2 10.5 8.1

240Pu standardI 6.4 224 16.8 4.6 15.8 10.6 6.5 [8.13]
standardII 7.1 213 18.7 5.4 16.6 11.0 9.7
superlong 8.7 174 23.1 8.9 21.4 10.6

252Cf supershort 3.1 268 12.4 1.7 14.3 5.6 [6.13]
standardI 5.8 236 23.6 4.6 16.6 9.8 7.4
standardII 7.2 221 29.1 5.5 17.5 9.8 8.3
standardIII 9.5
superasymmetric 5,5
superlong 6.8 192 27.8 8.4 21.0 11.1 7.7

255Es supershort 6.2 264 25.0 2.5 14.9 6.6 =12 [5.8]
standard 7.6 232 30.9 5.4 17.2 10.3 =11

258Fm supershort 5.6 268 22.7 3.3 15.0 8.8 11 [8.14)
standard 6.5 236 26.6 5.2 17.2 10.3 19

272[108] supershort 15.2 276 61.7 6.8 17.4 12

standard 16.7 212 67.9 12.1 22.7 12
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Two situationsmayoccur:
(i) The highestbarriers of the channelslie behindthe bifurcation, and hencethe channelshave

separatebarriers.
(ii) There is only one highestbarrier for bothchannels.It is locatedbeforethe bifurcation.Behind

the bifurcation lower secondarybarriersmaybe met.
The first situationis shownin fig. 7.1. Pick the superlongandstandardchannelsfor example:the first

standardbarrier is quite low, bifurcation takesplace closeto the secondminimum, and after that the
huge second standardand superlong barriers rise. [Actually, situation (i) applies rather to nuclei
somewhatlighter thancalifornium, comparetables8.2 and 8.3.]

Situation (ii) is typical for the relation betweenthe supershortand the standardchannels. In the
heaviestactinides,wherebothchannelsexist, the first standardbarrieris highest(seetable 8.2), andthe
bifurcation takesplacecloseto the secondminimum,seefig. 8.1. Behindthe bifurcation, lower barriers
still have to be passed.All nuclei fissioning via the supershortchannel must climb the supershort
barrier, and the standardfissioners must surmount the second standardbarrier. (The “secondary
standardbarriers”, beingin fact third barriers, can be neglectedfor this case.)

The two situationscausedifferent dynamics.Let us first considera singlebifurcationpoint. It divides
the flux of probability, and we expectthat the division is aboutequal. Here “equal” meanslessthan
one orderof magnitudedifference.Inertia can drive, for example,90% of the flux into onechanneland
leave only 10% for the other. Now, if there arehigh barriersbehind the bifurcation, the prObability
bouncesback. The nucleusreturnsto the secondminimumand mustundertakeanotherattempt.If one
of the barriers is higher, the nucleusmust ride many more attacksagainst it before penetration
succeeds.So we understandthatsituation (i) allowsfor channelprobabilities that aredifferent by orders
of magnitudes.

Situation (ii) can produce only differencesof one order of magnitude. After the nucleushas
overriddenthe primary barrier, the smaller onesare like pebbles.We expect the largest effects in
spontaneousfission.

As mentionedabove,situation(i) is typical for the superlong—standardbifurcation, while situation
(ii) appliesto the supershort—standardbranching.Hencewe understandnow why the superlongand
standardchannelscan displaceeachother,whereassupershortandstandardmust coexist,as suggested
in fig. 7.5a.

The battle for dominancebetweensuperlong and standardis decided,at least for the order of
magnitude,by the changingheightsB,1 andB,5 documentedin the tables8.2 and 8.3. We haveplotted
the barrier-heightdifferencesin fig. 8.2. The potential-energycalculationsshow that B,~is lower for
lighter nuclei, but thenwith increasingmassthe standardbarrier B,, becomessmaller. This generates
thoselarge differencesB,~— B,, shownin fig. 8.2 for ~ 230. The differencesdecreaseagain in the
heaviernuclei. Comparisonwith experimentalvaluesshowsthat the theory is right but exaggerates.In
particular,the point of equality is shiftedfrom A ~ 224 to ~ 217. But suchshiftsareunavoidable
with the Strutinskymethod,as we pointedout in section8.1.

The way by whichthe experimentalsuperlongbarrierswerefoundis illustratedin fig. 7.7. First some
yields haveto bemeasuredatseveralexcitationenergiesE*. Thenonecollects,for everyE*, the yield
atmasssymmetry and at low total kinetic energiesto determine,as indicatedby eqs. (7.1) and (7.5),
the probability p,,(E*) of the superlongchannel.Thesedata are finally fitted by the function

w
p,,(E*) = 1+ exp[2ir(B,1— E*)/hw,i] (8.2)
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Fig. 8.2. Excessof the superlongbarrier B,, over the standard barrierB,, as a function of the mass numberA,, of the fissioning nucleus.
Computationalresultsare indicated by the hollow circles,measuredonesby thefull dots. Isotopesof an elementare connectedby massivelines.
Symbolsof somerelevantelementsareadded.The dashedlinesarethereto indicatethemajortrends.For thesakeof transparencynot all thedata,
which can be obtainedfrom the tables8.2 and 8.3, aredisplayed.

with parametersW,~,B,, and!Iw,,. For photofissionof
232Th Piessensandco-workersobtaineda 1’%’,~of a

few per cent, B,~as 8.5—8.7MeV (cf. table 8.3) and hw,
1 as 0.33—0.39MeV [7.6,8.10].

A moreadvancedmethodto isolatethe channelprobabilitieswill be presentedin section8.5. Similar
methodswere developedby Nakaharaand colleagues[8.11]. For photofission by bremsstrahlunga
convolutionhasto be performed[7.6] before B,1 can be extracted.

The strugglebetweenthe supershortandstandardchannelsseemsto be influencedby the secondary
barriersthatarelisted in table8.4. To facilitate comparisonwith experimentalmaterials,we computed
again the differencesB51(2nd) — B,5 and used them to establishtable 8.7. The table is arranged
accordingto increasingdifferences.One recognizesthat the experimentalsupershortprobabilitiesp,
increaseas thesedifferencesgrow, with

256Fmas the only possibleexception.
Both examples,that in fig. 8.2 and that in table 8.7, representwhat is called “monotonicity”: the

Strutinsky methodis not good enoughto calculatepotentialenergieswith high accuracy,but one can
follow certainsystematictrendsand comparethem with measurements.

Table 8.7
The differenceof thetwo small barriersbehind a bifurcation point
andtheprobabilityp,’, of fission viathesupershortchannel.The value
quotedfor 256Fm results from a very crude estimatebasedon data
presentedby Unik et al. [5.8]. It shouldthereforebe consideredwith
caution. A similar remark applies to 259Fm as this is data from a

pioneeringexperiment

Nucleus [B,,(2nd)— B,,]’ (MeV) p,’, (%) References

252Cf —0.9 0 [6.13]
260[104] —0.2 0 [7.9]

258No —0.2 5 [7.9]
259Md 0.2 12 [7.9]
255Es 0.2 13 [5.8]
256Fm 0.6 =10 [5.8]
258Fm 0.8 50 [7.9]
260Md 0.8 58 [7.9]
259Fm 1.2 =73 [7.10]
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8.4. Thestandardsplitting

The systematicsof low-energyfission can be understoodin termsof the standard,superlongand
supershortchannels.Also from the computationalpoint of view, thesethreechannelsareeasilyfound
and discriminated. They are also surprisingly stable if important parametersin the microscopic
calculations(seech. 9) arevaried or the representationof the surface(seech. 2) is changed.Therefore,
thereis no doubt on the reality of thesechannels,and their computedcharacteristicssuchas barriers,
bifurcationsand prescissionshapesshould be valid, at least as approximations.

However, standardfission is almost always prevailing and henceexperimentershaveconsideredit
favorably.The resultof such an inspectioncan be seenin fig. 8.3. We perceivetwo components,one
aroundmassnumberA 135 andTKE 190MeV (the right-handsidehill), the othercloseto A 142
and TKE 175MeV (left-hand side). The first, with the smaller asymmetry,is standardI. It is most
prominentin 242Pu.The second,standardII, appearsbestin 236Pu.

The standardsplitting is no speciality of the plutonium isotopes.First evidencefor two standard
channelsin 236U was publishedin [7.11]. It is nowadaysalso proventhat two standardsexist in 232Th
[7.6]. Taking suitable data for 213At is more difficult, howeverthe available material is perspicious
enough[7.4,7.5].

In all theserecentexperimentsthe standardcomponentwas decomposedasindicatedby eq. (7.1).
Moreover, it was demonstratedthat the channelprobabilitiesof the two standardchannelsvary a lot
when the external parametersof the reaction are changedonly a little [1.8]. However, a mere
decompositionof the standardcontributionhaslongbeenpursued.Data areavailablefor manymore
nuclei, see [8.17]and [8.11]. One can discoverboth standardcomponentsalso in the yield Y(A) of
einsteiniumshownin fig. 7.3. Herethe theorists(we) were too lazy to separatestandardI from standard
II. This is the causeof the poor descriptionof the measuredyield at .A.=135. The neglect of the
standardsplitting can alsobeseenin theslight deepeningof the theoreticalTKE(A) atthe A 135 line,
as standardI gives rise to high kinetic energies.

The standardI prescissionshapesare not only less asymmetricthan those of standardII but
generallyalsoshorter(seetable8.5). Therefore,standardI prescissionshapesmakefragmentswith less
deformation.This must show up in the neutron multiplicities. Refer to fig. 7.4. The effects of the
standardsplitting on the neutronmultiplicities areoutlined in the predictionfor thorium: thereduction
of emissionis bestseen in the total neutronmultiplicity, displayedby the dashedline. However, the
simpleneutronmultiplicity also(full line) exhibitsthereductionby a kink at A = 97; this is in 232Ththe
complementof A = 135. Onemayrejectthisas a speculationsinceno experimentaldataareat handfor
thorium.However,for 236U, measurementsandcalculationsare available,andin both the effectsof the
standardsplitting can be seen.

Hence the standardI and II channelsoccur in all preactinidesandactinides.The standardsplitting
can be seen in the massand kinetic-energydistributionsand in the neutronmultiplicities.

A phenomenonthat has attractedmuch attentionduring the past ten years [6.16], “true cold
fragmentation”,is a sideeffect of the standardsplitting. Looselyspoken,“cold fragmentation”at low
excitationenergiesis nothingbut the tail of the TKE fluctuationsdiscussedin ch. 6: evenin standard
fission, prescissionshapesmay sometimesbecome very short. The newbornfragmentsare almost
sphericaland stay thereforecold. Due to the large Coulomb repulsion these fragments attain high
kinetic energies.Note the differenceto scissionvia the supershortchannelwhereevenon the average
coldfragmentsareproduced.Cold fragmentationvia the standardchannels,in contrast,is a featureof
rare fluctuations. By true cold fragmentationone understandsTKE fluctuations that exhaustthe
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IKE. The data is takenfrom [7.8].
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Q-valueof the partition. Most remarkably,true cold fragmentationonly happensin a certainrangeof
fragmentmassnumbers.For nuclei from thoriumto californium this rangewasfound invariably around
A 130 and, of course, around~ — A. An example is shown in fig. 8.4. The full, raggedline
representsthe limit set by the Q-value, and the dottedand dashedlines give the upper limits of the
TKE fluctuationsas measuredin differentexperiments.One can seethat thesefluctuationstouchthe
Q-value only atA = 102±5. This observationis explainedby the standard1111 splitting: standardI
producesevenon the averagethe shorterprescissionshapes.But its TKE fluctuationsdo not differ
appreciablyfrom thoseof standardII, seetable 8.6. Therefore,it is almosttrivial thatthe fluctuations
of standardI pressto the Q-valueswhereasthoseof standardII do not.

The display of the theoretical results in fig. 8.4 needs some explanation. We representedthe
contributionsfrom the standardchannels (st I and St II) and from the superlongchannel (sl) by
productsof Gaussians

(A - A)2 [TKE -~(A)]2
exp(_ 2 ) exp(— 2 )~ (8.3)

2tYE

The Coulombeffect is takeninto accountby

(8.4)

With thesesimplifications of (6.1), (7.5) and (7.6)we drewcontoursfor everychannelseparately.The
function (8.3) hasthe value1 for A = A andTKE = TKE. The averagesA and TKE weretakenfrom
table 7.1 and appearin fig. 8.4 as stars.On the ellipsoidal lines, the function (8.3) takesthe value
exp(—~)2 Thus the ellipsoidsdisplay directly the deviationscr’,~ando~presentedin the tables7.1 and
8.6.

210
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Fig. 8.4. Coldfragmentation.Q-values(full zigzagline) accordingto wapstraandAudi [4.6]andthe limits of theyield Y(A,IKE) for high IKE as
measuredby Signarbieuxet al. [8.19—8.20](dashedline) and Clerk et al. [8.19,8.21](dottedline). The theoretical resultsare shownasthe
ellipsoidalcontoursaroundthe starsand refer to the standardchannels(St I, st II) and to superlong(sI), as explainedin the text.
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The evidenceproducedup to now showsonly that two different standardprescissionshapesexist.
But can we also learnhow theseshapesare reached?Where,for example,is the bifurcationpoint at
which the two standardchannelsseparateand what is the situationof the barriers?The answersare
containedin fig. 8.1: the standardbifurcation takesplacebehindthe secondstandardbarrier. Behind
the bifurcationlow standardsecondarybarriers arelocated.This is situation (ii) as introducedin section
8.3. Thusthe standardsplitting shouldbehaveas the standard—supershortbifurcation.Evidencefor this
exists,but before we can produceit, we must issue a disclaimer.

The computationalseparationof standardI andII is difficult. This is becauseboth standardchannels
stayclose to eachotherin deformationspace.Our theoreticalresultsconcerningthe standardsplitting
do not thereforehavethe samecertaintyas the discriminationbetweenthe standard,superlongand
supershortchannels.The sheerexistenceof standardI and II is beyonddoubt,but detailssuch as the
“standardsecondarybarriers” (cf. fig. 8.1) aredebatable.We stress,in particular,that fig. 8.5 is to be
judgedwith reservations.

Whatwewish to explain is the increaseof the standardI yield from 235Puto 242Puas shownin fig.
8.3. We want to derive it from the changingheightof the standardsecondarybarriers.

Seein the upperpart of fig. 8.5 a detail of a channelgraphof 240Pu.The total graphwould look like
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Fig. 8.5. Geometric(top) and energetic(bottom) characteristicsof thestandardI/Il splitting in theplutoniumisotopes.This figure is laid out like
the channelgraph7.1. exceptthat thereis no (z,!) projectionandthat thegraphof potentialenergyover 1 is duplicated.The missingstandard
counterpartsin the lowerpartsareindicatedby thedashedlines. Note thatthepotentialenergiesarenormalizedherewith respectto thebifurcation
point. Thus Ebf — Ed,, is showninsteadof E,,— Ed,,asin fig. 7.1. Thepresentgraphwasfoundusingthethree-subspacerepresentation(2.14).This
is thereasonwhy we hesitateto claim thatthesecurvesarethedefinitive truth. Ourstandardsecondarybarriershave,incidentally,asimilarity with
the third hump of the standardbarrierasdiscussedin [8.18].
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the upper part of fig. 7.1 exceptthat thereis no supershortchannelin plutonium. The presentfigure
details the piece of the standardchanneljust behind the big loop. It startsat the X indicating the
secondstandardbarrier.What is not containedin fig. 7.1 but is shownhereis the standardbifurcation
point • with the subsequentstandardsplitting. We learnfrom the top right-handpart of fig. 8.5 that
standardI guidesto ruptureat a shortersemilength1. We find from the top left-handpart thatstandard
I favorsscissionwith small asymmetries.

It is in fig. 8.5 as in all channelgraphs:the geometriccharacteristicsof a channeldo not differ much
for a nucleusnearbyin chargeandmass.Sothe sameupperpart is valid for all plutoniumisotopes,and
also for uranium andthoriumit looks muchthe sameway.

However, the potentialenergiesare different for, say, 236Pu and 242Pu. They are depictedin the
lower partsof fig. 8.5. To maintaincompletecorrespondenceto fig. 7.1, bothfamilies of curvesshould
appearin onegraph.For betterlucidity we disentangledthe energylinesanddrewthe standardI andII
lines, respectively,in separategraphs.Again, all the lines start at the secondstandardbarrier. For
referencea short piece of the displacedchannelmateis attached,seethe dashedlines.

The bumpsin the potentialenergiesarethe “secondarystandardbarriers”declaredin fig. 8.1. All
thesebarriersdecreaseaswe stepfrom the light to the heavyisotopes.But the barriersalongstandardI
evendisappear.Henceweconcludethat the standardI channelis partlypluggedup in 236Pu,whereasit
is entirelyopenin 242Pu.This fits well with fig. 8.3, which showsthe largercountof standardI eventsin
the spontaneousfission of 242Pu.

Fortunately,we haveindependentevidencefor the claim that the standardsplitting is a situation-(ii)
bifurcation. Namely with this kind of bifurcation order-of-magnitudedifferencesbetweenthe channel
probabilitiesp~~

1andp,~areimpossible.In fact,PstI’P,ttl variesby not morethanfrom 0.2 to 0.5 [8.13].
This is especiallyimpressiveif the same nucleusat different excitation energiesis considered.

Schillebeeckxand co-workers[8.13] comparedspontaneousfission of
240Puwith the neutron-induced

fission of 239Pu In the secondcasethe nucleusreceives6.3MeV extraexcitationenergy,namely the
separationenergyof the capturedneutron.In asituation-(i) bifurcation that would producea roaring
effect. However, it was found thatnothingdramatichappenswith the channelprobabilities[8.13].The
additional excitation energyjust broadensthe massdistributions as describedin eq. (4.8) by the
dependenceon temperatureT.

The comparisonbetweenmeasured(e) andcomputed(t) valuesis presentedin table8.8. Relativeto
the accuracyof the experimentalandtheoreticalmethodsthe agreementis as good as possible.Similar
comparisonsweremadefor thephoton-inducedfission of 232Th, andsimilarconclusionswith respectto
the validity of eq. (4.8) could be drawn [7.6].

Accuratefits of the massdistributionsof heavieractinidessuggestthe existenceof a third standard

Table 8.8
Broadeningof themassdistributionsfrom the
standardchannelsdueto additionalexcitation
energy.The experimentaldata is taken from

[8.13]

Reaction Channel o~ o~,

2’~Pu(sf) standardI 3.9 2.8
239Pu(n,f) standardI 4.2 3.6

240Pu(sf) standardII 5.5 5.7
239Pu(n,f) standardII 5.9 6.3
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channel. It is evenmore asymmetricthan the standardII channel and also longer. First hints of
standardIII can beseenin the fissionof the plutoniumisotopes[8.13].It is distinct in 24tAm(n f) [8.22]
andpowerful in 252Cf(sf),seesection8.5. Thereis no experimentalprooffor its independentexistence.
In addition, our potential-energycalculationsgive indicationsfor such a channel,but we do not have
sufficiently reliable results.

Generallywe expectthat moreandmoresplittingsof all major channelswill be discoveredas soonas
better analysisand instrumentationis at our disposal.

8.5. Californium has everything

Best fission, for the observer,is spontaneousfission since no inducing agentis needed.But the
counting rates of spontaneousfission of naturalnuclei are very small, and nuclei with higher fission
ratesmust be createdartifically. Breedingof 252Cf is not too difficult, andits fission half-life is short
enoughto observebillions of eventswithin a few weeks. Becauseof this, we havefor 252Cf(sf) data
which areeitheruniqueor better thanthosemeasuredwith othernuclei.Among thesewe shall specify:

(i) a two-dimensionalyield Y(A,TKE) of excellentaccuracy,
(ii) the superasymmetricfission events,

(iii) contractiongammarays,
(iv) a two-dimensionalneutronmultiplicity i(A, TKE).
All thesefeaturesarerelatedto randomneckruptureandmultichannelfission. Moreover,someof

them give insights that stimulatefurther research.
Californium is also peculiarbecauseit hasall the fission channelsthatwe are acquaintedwith, see

tables 7.1, 8.5 and 8.6. According to theory, 252Cf has at the sametime superlongand supershort
channels.Accordingto theoryand experiment,a superasymmetricchannelexists. And a standardIII
channelwas found by measurements(table8.5).

Let us start with topic (i). The dependenceof the yield on the total kinetic energyis weird, as
pointedout alreadyin section6.1. But nowthat wehavethat dependencefrom eqs. (6.1) and(6.2),we
can establish a representationof Y(A,TKE) that is more accurate than the usual superpositionof
productsof Gaussiansas, for examplein eq. (8.3). Takethe Y(TKE) from eq. (6.1), renameit as

Y~(TKE)to stressthat the parameters(6.3) are different for each channel c. To incorporatethe

dependenceon A, form

1 1 [ /—(A—A )2\ /—(A—A +A )2\1]
YC(A,TKE) = Y~(TKE)~ 2 1/2 Lexp~ 2 C ) + exp,\ C (8.5)

(8ITUAC) 2°A.c 2UA,c

We havenow six fitting parameters,two in addition to h~,1min,c’ 1max,c and 1dec,c’ namelythe average
massnumberA~and the standarddeviationUA .~ of the massdistribution. All theseparametersreflect
certain propertiesof a definite fission channel: h~describesthe relative frequencywith which this
channelis populated.It is just anumericallymoreconvenientsubstitutefor the channelprobabilityp,~.

1max,c is the semilengthwith the most favorablepotentialenergyfor scission. In fact, thesevaluesmay
becomparedwith thecomputed1 of theprescissionshapein table 8.5. 1min.C is the semilength where the
potentialenergybecomestoo largeto allow anyscissionat all. In otherwords, 1mjflc fixes an absolute
upper boundof TKE, which exists due to Q-value limitations. 1decc is relatedto the decreaseof the
potentialenergyAU with increasingsemilength1 [cf. (6.6)] since changesof AU modify the spread of
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the prescissionshapesand hencealso the yield at low TKE. Seeeqs. (6.34) for illustration.All the 1
characterizethe potential-energysurface (PES) in the direction of the elongation.AC and 0A ~ in
contrast,are associatedwith the characteristicsof the PESin the direction of asymmetry.

The completeformula for the fit can be written as

yieldt(A,TKE) = ~ YC(A,TKE). (8.6)

If there are five fission channels,30 parametershave to be accommodated.In proportion to the
thousandsof data which are_reproduced,this is a small_number.Our resultsare given in table 8.9.

The meanmassnumbersA can be comparedwith the A~ in table 7.1, and the lmax with the 1 in table
8.5. Good agreementis found for standardI andII, but also superlongcomesout as desiredsinceits
large ‘dec effectsthe sameas a larger valueof ~~maxcomparethe good agreementof TKEe andTKEt in
table 7.1. But the experimentalsupershortcontribution, if it exists, is not representedby the fit. And
last and worst, the calculationsfor the superasymmetricchannelhaveslipped.

More insight can be obtainedfrom fig. 8.6. Its upper part is a contourplot of the measuredyield
yielde [6.14].Plotting beneath the fitted yield would not helpmuch sincethe eye could barelysee any
difference. But from the errorswe can learnsomethingmeaningful.

No significant errors occur in the bulk. Only at the edges,wherethe counting rates,andthus the
yielde, are small, do misfits occur. An insignificantmisfit is, for example,the broadbeardat low total
kinetic energiesas it is causedby unwantedscatteringsin the detector.

However, the black patchesat high TKE close to masssymmetry are significant. These are the
long-sought-forfingerprints of the supershortchannel,which was not takeninto accountwhenthe fit
was performed.One can evenunderstandthat the supershortcontributiondoesnot appearexactlyat
symmetry.For a long piece of the supershortchannelpasses,in californium, through asymmetry,as
shownin fig. 7.1.

Likewise the dottedpatchesare significant. They demonstratehow difficult it is to representthe
superasymmetriccomponentadequately. In the presentcase, the superasymmetriccomponentis
swallowedby the fluctuationsof standardIII so that only in the regionof transitionfrom standardIII to
superasymmetricdoesa misfit remain,namely the dottedpatches.

So we havearrivedat topic (ii): the superasymmetriccomponentseemsto be specialin everyrespect.
This can be concluded from fig. 8.7: in the mass range above A 178 and below 74 an almost
discontinuousbehaviorin TKE(A) and oE(A) is observed.Such a jumpy style is incompatiblewith a
broad fission channel and indicatesthat the superasymmetriceventsare rather producedby cluster

Table 8.9
Parametersfor therepresentationof theyield Y(A,TKE) from spontaneous
fission of 252Cf accordingto eqs. (6.1), (6.2), (8.5) and (8.6) basedon the
data from [6.14].A representationof this kind was first publishedin [6.13].
Thepresentvaluesareslightly improved,but thevaluesof thesuperasymmet-

ric parametersare still not more thanorder-of-magnitudeestimates

Channel h l,,~, !m,, !d,c A 0A

standardI 1.41 10’ 10.1 17.1 0.103 134.9 3.13
standardII 8.71 iO’ 13.7 17.9 0.270 142.5 5.00
standardIII 3.13 10’ 13.6 18.7 0.318 148.5 7.13
superasymmetric 1.71 i04 16.9 20.8 0.165 178.6 0.37
superlong 2.85 i04 14.1 18.2 0.405 127.5 12.6



244 U. Brosa etal., Nuclearscission

240
TKE

___ ~

100 ~ / \\ ~
240 ___1-____~.~___~_____~ 170 / \ I

220 160 TKE(A)/MeV

200 ~ 11
180 errors

E ~ ____
100 6 ~ A

60 80 100 120 140 160 180 200 75 100 125 150 175

Fig. 8.6. Upper part: measuredyield’ [6.14] from the spontaneous Fig. 8.7. Yield Y(A), averagetotal kinetic energy TKE(A) and
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5(A) of the total kinetic energyfor thesponta-
numberA and totalkinetic energyTKE. Thedashedcontoursarefor neous fission of californium. The figure is taken from [3.15].The
3, 30, 300, 3000and30000 counts,from outsideinwards,while thefull measurementsweredoneby Budtz-Jørgensenand Knitter [6.14].
onesindicate 10, 100, 1000 and 10000 counts,respectively.Lower
part: theerrorsof a fit with therepresentation(8.6). Thecontoursare
definedby yield’ — yie!d’~/yield’ = 0.5. yield~is computedwith the
parametersof table8.9, exceptfor thesuperasymmetriccontribution,
which wascancelled.

emission [8.23]. This might also be the reasonfor the poor agreementbetweenour fission channel
calculationsandthe experimentaldata, cf. table 7.l.

The superasymmetricevents in the spontaneousfission of
252Cf were discoveredby Barreauand

co-workers[8.24],but it seemsthat a similar phenomenonwas observedearlier in the fission of 238U
with 2 MeV neutrons[8.25].Furthermore,superasymmetriceventsalso occur in 248Cm(sf) [8.26].We
searchedfor the superasymmetricchannelin all thesenuclei.For 248Cmwefounda channelwith similar
characteristicsas thosegiven in table7.1 for 252Cf. In particular,we noticedno significantchangein the
superasymmetricbarrier. We saw no indication of the superasymmetricchannelin 238U.

Figure 8.7 is still usefulfor anotherpurpose:the standarddeviationsUE(A) arethe moststraightfor-



U. Brosa eta!., Nuclearscission 245

wardseparatorsbetweencontributionsfrom differentfission channels.Thereare,for example,peaksin
oE(A) atA 123 andA 129. They limit the reignof thesuperlongchannel.Theselimits havelittle to
do with the actualwidth a-A of table7.1. They just indicatethe pointswheretwo channelsyield about
equalabundance.The mechanismbehindis simplesuperposition:two channelsmayproducecontribu-
tions with similar a-5~,but the respectiveTKEC are usually somewhatdifferent. This producesan
overlapenhancementfor the total a-E, as represented,for example,by the third term in (8.1). Exactly
this observationled Britt andcolleagues[1.10]to postulatethosetwo modesof fission that we now call
the standardand the superlong.

Concerningtopic (iii): the superlongchannelmust showup everywhere.We haveseenthis for the
yield Y(A), total kinetic energyTKE(A) and neutron multiplicities i(A) in section 7.2. But the
superlongchannelalso makesits mark on the total gammamultiplicities.

Referto fig. 3.2. The deformedfragmentsshownin fig. 3.2b arecharged.As theyseparate,theywill
relax to a nearly sphericalshape.This requiresa redistributionof charge.An unsteadymotion of
charge,however,createselectromagneticradiation,gammaquanta, in other words. At presentthe
velocity of relaxationis unknown,nor is it known if it is combinedwith anoscillation. But it is clear
that, if high-energycontractiongammaquantaexist, theymustbepreferentiallyemittedfrom fragments
createdvia the superlongchannel.For the superlongchannelgeneratesthe fragmentswith the largest
deformations.

Usuallygammamultiplicities v~vary as functionsof the gammaenergyE~in aBoltzmannianfashion,
proportional to exp(—E~IT).Recently for certain massesan enhancementat E~> 1.5MeV was
observed[8.27—8.29].The respectivegammaquantawereseparatedandtheir multiplicity was displayed
as a functionof the fragmentmassnumber,cf. fig. 8.8. We seethat the high-energygammarays come
in the massregion characteristicfor the superlongcontribution. The averagevalueA 126 and the
deviationa-A 8 readfrom fig. 8.8 agreereasonablywith the valuessuppliedby table7.1, which for its
part wereobtainedfrom the yield Y(A,TKE). Threefurtherpropertiesfit into the picture.The first is
the averagegammaenergyof about 4 MeV, which is larger but of the sameorder as the energies
obtainablefrom the smallergiant quadrupoleoscillations.Second,the shareof the multiplicity that the
high-energygammaquantacontributeis well below 1%. This is compatiblewith asuperlongprobability

= 1.3% (cf. table 8.5) when one considersthat a fragmentemits about five gammaquanta.Third,
the high-energyquantaappearas coincidentpairs.And in fact, the superlongchannelcan produceonly
two strongly deformedfragmentsif not very asymmetricalruptureoccurs.

Physically the contractiongamma quanta are different from the usual statisticalgammas.The
contractiongammasareemittedbeforethe neutronsappear.Moststatisticalgammaquantaarepuffed

0.1Sf— I,I’I’lII’II I-

V~(A)+V~(A’) > 1.5 MeV1
0.10 + I

0.05

0.00 +,+,+ I. I ,

90 100 110 120 130 1~0 iso A 60

Fig. 8.8. Total gammamultiplicity i~,(A)+ i,(A’) (A’ = A,, — A) asafunction of themassnumberA of onethefragments.It was thusnot decided
from which fragmentthehigh-energy(E~>1.5MeV) gammaquantacame. The datawere measuredby Schmid-Fabianet al. [8.27,8.28].
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out only after the evaporationof neutrons.Therefore,the statisticalgammashaveto be contentwith
what is left from the higher-priorityprocesses,that is with approximatelyhalf of the separationenergy
of a neutron. The experimentalproof of this fact is also quite new [8.27—8.29].

Finally topic (iv): the generalprocedurefor the predictionof exit-channelobservablesconsistsof two
parts: find the prescissionshapesand derive the measurablequantities.The first part can be done, in
low-energy fission, by an examinationof the potentialenergyof the scissioningnucleus.This involves
quantum shell effects. The second part is done relying only on continuum mechanics. Such an
inconsistencybecomesconspiciousas soonas dataof higher differentiationareconsidered.An example
is the neutronmultiplicity ii(A, TKE) as a function of thefragmentmassnumberand the total kinetic
energy.

Experimentallyit is found that the detailedmultiplicity maybe representedas

i(A, TKE) = {aTKE~(A)[TKE — TKEmax(A)] if TKE<TKEmax(A), (8.7)0 otherwise.

Two one-variablefunctionsTKEmax(A) and 0TKE i(A) arethus sufficient to describethe two-variable
function ~(A, TKE) [8.27,6.14]. The linearity is, of course,an approximation.We expect negative
correctionsfirst becauseit costs moreand moreenergywhenseveralneutronsareemittedandsecond,
in the domain of superlong,becauseof the contractiongammas.

Within the frame of linearity eachof the threefunctions

i’(A), 0TKEv(A), TKEmax(A) (8.8)

can be expressedby the others.To seethis, one insertseq. (8.7) into the trivial relation

- - J~°i(A,TKE)Y(A,TKE)dTKE

J~’Y(A,TKE)dTKE . (8.9)

An inessentialneglectat the integrationlimits yields the announcedrelationship

= aTKEi(A) [TKE(A) ~TKEmax(A)]. (8.10)

The averagekinetic energyTKE(A) is so well established that it must be consideredas given.
Equation(8.10) maybe interpretedas follows: the “elasticenergy” containedin the fragmentsjust

after scissiondependson two factors. One of them is the “elasticity module” of that piece of the
prescissionnucleusfrom which the fragmentis to be made.This module is expressedby the slope
function I3TKEi(A). In fact, one may identify the total kinetic energyas an inversemeasureof the
elongationand the multiplicity as a measureof the elastic energy.The secondfactor is the deviation
from the averageelongation,expressedby the function TKE(A)— TKEmax(A). This factor is the more
trivial one because it contains only the effects described by the plain random neck rupture model. It is
thereforenot surprisingthat it is againa sawtoothcurve. But thesawtoothin theslopefunction, seefig.
8.9, was not expected.The paradoxbecomesunderstandableif one remembersthat random neck
rupture presumeshomogeneousmatter. If the prescissionnucleushas a substructure,it must fail.
Hence fig. 8.9 may be interpretedby a prescissionshapethat hasa soft neck and two hard heads.
Stretchingthe shapeis facilitatedjust by the neck;the headsremaininert. The two minima in fig. 8.9
correspondto the massesof theseheads.Amusingly enoughwe find the massnumbersA 28 + 50 and
A~50+82.
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Fig. 8.9. The slopefunctionai/3TKE definedin (8.7) asafunction of fragmentmassnumberA. The measurements,displayedby thedots, were
performedby Budtz-JørgensenandKnitter [6.14].Schmid-Fabianetal. [8.27]werethefirst to publishdatalike these.The full line is theprediction
from plain randomneckrupture.The numberson theprescissionshapeindicatethestiff heads(80, 130) andthemostprobablepartition (109,143),
compare[8.28].

9. The theory of fission channels

9.1. Strutinsky’sapproach

To revealthefission channelsdiscussedin the previoustwo chapters,onemustcomputethe potential
energyof deformednuclei Edef as a function of the shapecoordinates.But evenwith this ability it
remainsto analyzethe computeddata in the multidimensionalspaceof shapeparameters.This is a
tough job for which tools will be presentedin the next two sections.Herewe only detail our way to
computethe Edef~

Strutinsky’s approach[1.2] was takenin a textbookversion [9.1]. The potentialenergyis composed
of a liquid-drop and a shell part

Edef = Eld + E,helI , (9.1)

both dependingon deformation.
For the liquid drop part EId we took the Myers—Swiateckimodel [9.2] with its improved set of

parameters[9.3]. The computationof the Coulombenergyof a deformedshapewas greatlyaccelerated
by the use of the double-divergenceformula [9.4,9.5]. The integralswere done using numerical
extrapolationmethods[9.6] with careful treatmentof the singularities.

More modern approachesthan the Myers—Swiatecki model are available, for example, folding
techniques[8.5] or semiclassicalmethods[9.7]. However, folding methodsdo not admit a curvature
correction,which turned out to be important for theenergylandscapecloseto scission[9.8,9.9], andno
generallyacceptedprescriptionfor the usageof the semiclassicalmethodsseemsto exist.

The Myers—Swiateckimodeladmitsa curvaturecorrection, but the approvedversion [9.3] doesnot
haveone.Therefore,our energiesE~je,of the prescissionshapes(table 8.5) areprobably too large,that
is, the tails of the potentialenergyin fig. 7.1 decreasetoo much.
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The computationof the shellpart in (9.1) is brokendown in threephases:
(i) Obtain the single-particlespectrum,

(ii) smear it out,
(iii) apply BCS pairing on both spectra.

The differencebetweenthe BCS total energiesfor sharpand smearedspectrais Eshell.

(i) For the single-particle spectrum it takes Hamiltonians for neutrons

Hn = + V5(r) — 2(M~c)
2s [VVn(r)xp] (9.2)

and protons

H, = + V(r) — 2(Mzc)2 s [VV,(r) xp] + VCOUI(r). (9.3)

Herep and s denotethe vectoroperatorsof momentumand spin. Mn and M, are the masses of the
neutronsand the protons, respectively, and V~(r) and V (r) are their respectivesingle-particle
potentials.We choosethem to be of Woods—Saxontype

V~,(p,~ = 1 + exp{[L(p,~)— R]/a} (9.4)

The spin—orbit strength,radius and diffuseness

A = 23.8[1 + 2(Ncn — Z~~)]IA~~, R = 1.24A~3fm, a = 0.65fm (9.5)

arethe samefor neutronsandprotons (Ncn, Z,~, and ~ denotingthe numbersof neutrons,protons
and nucleonsin the fissioning nucleus,respectively),but the depthsof the potentials

= 53.3[1 ±0.63(N~~— Zcn)/Acn] MeV (9.6)

are different [9.10,9.11]. Finally,

3Ze2 d3’
4R3 I ~ (9.7)

(nucleus)

is the Coulombpotentialfelt by oneproton.
Written in cylindrical coordinatesp, ~,~, the function L(p, ~) adapts the potentials(9.4) to the

actual shape.We obtain L from the numerical solution of

Pshape(~1~’~’;1, r, z, c, s) = pRIL . (9.8)

This relation coercesthe similarity of all equipotentialcontours [9.12,9.13]. The descriptionof the
surfacePshapewas introducedin eq. (2.2).

Eigenvaluesof (9.2) and (9.3) are found by expandingthe eigensolutionsin terms of harmonic
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oscillatorfunctions for a spheroid

2W’ w 3 1/4 P2+z2

(p, ~,~ nf, m, m
5) = N[a(_~ ~)]pmL(Pn)(p

2)H(z)exp(— 2 + im~) (9.9)

with

n 1/2 lW w 1/2 Jt4 aw 1/2

N:=(
2fl~,(~+)!) , p:=( “~ ~)p, ~:=(°~

Therespectiveserieswere insertedinto (9.2) or (9.3). The resultingequationswere multiplied from the
left with the complexconjugatesof (9.9) and integratedover p, ~ and ~ using Gauss—Laguerreand
Gauss—Hermiteproceduresof order 25 and 20, respectively.The algebraiceigenvalueproblemwas
solved, reducing the matrices to tridiagonal form and subsequentbisection of the characteristic
polynomial [9.6].

Formulas like (9.9) with their quantum oscillator numbersn~,n~,three-projectionsof angular
momentumand spin m, m~,generalizedLaguerreL~m)(x)and Hermite polynomialsH~(x) are more
thanfamiliar. We haveincludedthemonly to indicate thesignificanceof two parameters:thefrequency

and the ratio a. Choosing theseparametersconvenientlycan savemuch computationalwork as
accuraterepresentationsof the eigensolutionsareobtainedwith fewerharmonicoscillatorfunctions.
is determinedby the overall size of the single-particlepotential, while a is related to the relative
elongationof the spheroid.

We fix a by the following prescription:definethe surfaceof the spheroidas

(~)fa[I3_(~_s)] for ~-sI<f3, 910
Pspheroid 0 elsewhere- . )

Then minimize

J d~[Pshape(~) — Pspheroid(fl]
2. (9.11)

This gives you, since the position of the centroids is known from the true surfacedescriptionPshape’

valuesfor a and f3. We dispensewith f3.
The frequencyw~is determinedby minimization of

f dr (Mnz~2r2 — Von,
r~ 2 1+exp([r—R]Ia)) (9.12)

with parametersfor the Woods—Saxonpotential as defined in (9.5) and (9.6). The cut-off radius
:= [2E/M

55fl
2]~2 is the zero of the oscillator potential in (9.12). Dispensewith S and keep 12.

Then, as the volume of the spheroidmustnot dependon the deformation,we obtain

w~Z [2/a”3 - (9.13)
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The indices n and z were affixed to clarify that this frequencyis different for neutronsandprotons.
Furthercomputationaltricks concerningthis subjectcan be found in [9.14].

Normally we tookthe functions(9.9) from the first 13 main oscillatorshells.Checkswere performed
with functionsfrom the first 18 shells, in particularfor shapeswith large deformations.We sometimes
observedchangesin the sequenceof the levels,but the final resultEShCII was neversignificantly altered.

(ii) Let { e.,, } denotethe single-particleenergiescomputedas describedin the previousphaseand
{ n,~}their multiplicities, for neutronsand protonsseparately.We obtain from them the sharp level
densityas

(9.14)

In contrast, the smearedlevel density is

j(e)=~~n~P6([e—e~]Iy)exp{—[(e—e~)/y]
2}. (9.15)

The polynomial

P
6(x)= —~x

6+~x4—~ + ~ (9.16)

is derivedfrom Hermitepolynomialsalongstandardlines [9.1]. For the smearingparametery we fixed
8 MeV.

One hasthe problemthat i(s) suddenlyfalls assoonas e approachesthe edgeof the Woods—Saxon
potential if only the boundstatesare included in eq. (9.15). We use the first 250 statesto keepthe
smeareddensity rising. When we plottedEshell as a function of y, we alwaysfounda broadplateaufor
small and moderatedeformations,normally extendingfrom y = 6 MeV to y = 10 MeV. Close to the
prescissionshapes,the quality of the plateaudeteriorated,but a shouldernear8 MeV was still seen,
similar to that reportedin [9.15].Thesefeaturespersistedwhen the numberof the pseudofreestates
includedwas varied. However, it emergesfrom suchchecksthat the absoluteaccuracyof Strutinsky’s
methodis not better than 1 MeV.

(iii) For BCS pairing at temperatureT one first introducesthe quasiparticleenergies

— AF)2 + g]112 if ~min< ~ < ~max

eqp:= (9.17)
E—AF~ else,

andcomputesthe gapz~andthe Fermi level AF from the gap equation

2 1

~=J dr g(e) — tanh~, (9.18)

and from the conservationof the averageparticle number

N= I de g(e)(1 — r — AF)tanh ~ (9.19)
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via a Newton—Raphsonprocedure[9.6] for given pairing strength G and rangeof pairing forces
(Cmjn, Smax). For N we must substitute the total number of neutrons~ or protons Z,,,, and
correspondinglyfor g(s) the level densityof neutronsor protons.The total energyis

sA e 42E(g, G, N) = f de g(e)e(1— ~ F)tanh~ — . (9.20)

We can usetheseequationswith the sharpand the smearedlevel densities. If N is even,the shell
correctionis

EsheII = E(,~,G, N) — E(1, G, N). (9.21)

For the treatmentof anunpairednucleonwenoticethat onecan computethetotal energywithoutBCS
by putting G, 4 and42/G to zero, andby omitting eq. (9.18). We considerthe particle on the highest
energylevel as unpairedandcalculatefor it the Strutinsky correctionswithout pairing:

E~h~Il=E(g,G~0,N—1)—E(1~G~0,N—1)+E(,~,G=0,N)—E(j, G=0,N)

— [E(,~,G = 0, N — 1) — E(j, G = 0, N — 1)]. (9.22)

For the rangeof the pairing forces (Smin, ~max)we selectedthe V~Nsingle-particleenergiesbelow
and abovethe Fermi level. Such a small rangewas chosensinceatlarge deformationsit happensthat
the Fermi level comesclose to the edgeof the potential,and we did not wish to includepseudofree
statesin the pairing corrections.For compensationwe had to insert a rather large pairing strength
G = 34/A~~MeV into eq. (9.18).

All multichannelcalculationspresentedin this reviewrefer to zerotemperatureT. Quite a few data
[5.20,7.3—7.5,8.9,8.12] at higher temperaturesareavailablesothat a theoreticalexplorationat T ~ 0
is certainly worthwhile.

9.2. Channelsearching

Now that we knowhow to computethe potentialenergiesEdef for arbitrarydeformations,what can
we do with this?They are a six-dimensionaldata set when the shapeparameters(2.1) areemployed,
and with the subspaces(2.14) or (2.16) theyarestill a four-dimensionalone. The classicalprocedureis
to removeall but two parametersby minimizationof Edef andto plot the resultas a contourplot as in
ref. [9.16].But this may leadto ambiguousinterpretationsas discussedat the endof section7.1.

We needat leastthreeshapeparameters.To visualizeEdef in a three-dimensionalspace,we can fix
one of them andplot Edef as a function of the two remainingparameters.Such aplot is shownin fig.
9.la. Nextwe assignasomewhatdifferentvalueto the fixed parameter,plot EdCfagainas afunction of
the two othersandso forth. In thisway we obtain a stackof contourplots containingfour-dimensional
information. This was in factour techniquewhenwe startedourinvestigation,andit is still a valuable
meansto study bewilderinggeometricalfeatures.

However, the methodis limited to four-dimensionaldata, andeventhereit costs agreatamounto.
computationaltime. As alreadypointed out in section8.1, oneis rarely interestedin the geometrical
survey displayed by a contour plot. Rather, one wishesto find certaindistinguishedpoints such as
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Fig. 9.1. Contourplots of thepotentialenergyE
8, — Ed,f (a) andof theshell correctionE,5,11 (b) in theplaneof thesemilengthI andneckradius

for “Cf. Theasymmetryz is zeroeverywhere.Theshaperepresentation(2.14) wasemployed.The numbersat thecontoursgiveenergiesin MeV
so thatnegativevaluesmeanthereis again.This figure refers immediatelyto fig. 7.1: thedotted line tracesthesupershortchannelwhile thedashed
oneindicatessuperiong.The standardandsuperasymmetricchannelscannotbe seenbecauseof their asymmetry.The full circlemarkstheminimum
on thesuperlongchanneldefiningits prescissionshape.Supershortandsuperlongwerefound with (q1, q,,q,) = (1,0, 0), cf. eq. (9.23),whichis not
exactly thenormalvector neededfor steepestdescent.However,one can readfrom this figure howsmall thechangeis. Note the largesize of the
shell correctionsin (b). Strutinskyrenormalizationwith its accuracyof about1 MeV is thereforelikely to give meaningfulresults.

minima, saddlepoints,prescissionshapesandthe low-energyconnectionsbetweenthem [8.1]. Onecan
do this by a searchfor pathsof steepestdescentwhich we call channelsearching. Our way to implement
it can be convenientlyillustratedin a three-dimensionalspace(1, r, z) describingelongation,constric-
tion and asymmetry[3.15]. In this spacewe definea plane

(l—l0)q1+(r—r0)q~+(z—z0)q,0 (9.23)

by the normalvector(q1, q~,q~)and astartingpoint (la, r0, z0) in the three-dimensionalspace.We ask
the computer to slide on this plane, checkingfor the minimum value of Edef compatiblewith the
constraint(9.23). The computerfinally reportstheminimal Edef at the point (lmjn, rmjn, Zmjn), so thatwe
havedata to enter the dots (‘mm’ rmjn), (Tmin, Zmin) and (Zmin, 1mm) into the various projectionsof a
channelgraphlike fig. 7.1. Next weshift the startingpoint so that it is about0.5fm apartfrom the first
oneandrepeatthe sliding. Thisgives a new minimal Edefat a different(lmjn’ rmjn, Zmmn), andoncemore
weenterits datainto fig. 7.1. Doing all this overandover againproducesthe seriesof dots in fig. 7.1,
which may be joined to form a line. At this stagewe check if the direction of the normalvector was
everywhereat leastapproximatelyparallelto the constructedline. When this is not the case,weadjust
the normalvector and repeatthe calculationuntil convergencetakesplace.

This procedurehasthe advantageof computingonly in the relevantpartsof the space.All the more
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important,it is readily generalizedto problemswith morethanfour dimensions.Altogetherweworked
with threevariants:

(i) channelsearchingin the space(1, r, z), cf. eqs. (2.14,2.15).
(ii) working in the space(1, r, z, c,s), seeeqs. (2.1—2.13),but eliminating z andc for everygiven 1,

r, s by minimization of the liquid-drop energyEld.

(iii) channelsearchingin the space(1, r, z, c, s), see eqs. (2.1—2.13).
The quantitativecomparisonswith experiments,aspresentedin the tables7.1 and8.1—8.8andin the

figs. 7.3, 7.4, 8.2 and 8.4, were achievedwith variant (iii).
We playedthe variantsoff againsteachotherto checkreliability. In addition,we rotatedthe normal

vectorsby anglesof 45°aroundthe channelsdiscoveredand varied the pairing strengthG from 0 to
34/A~1~MeV. The standard,superlongandsupershortchannelssatisfiedall thesetests.In addition, the
standardsplitting was confirmed,but with significant changesof the bifurcationpoint andthe secondary
barriers. Our resultsconcerningthe superasymmetricchannelturned out to be variable.

A renormalizationprocedurelike Strutinsky’s involvesa greatloss of significant digits, seethe minus
signsin eqs. (9.21,9.22). The relativeaccuracyof Eshell within a smallvolumeof deformationspaceis at
best0.1 MeV. Becauseof this, oneshouldusean algorithmfor the minimizationthat doesnot depend
on derivative-like information. We applied the Nelder—Meadroutine [9.6].

Due to the limited precisionof ESh~,locationsin the fission channelscannotbe moreaccuratethan
0.5 fm. This typically causeserrorsin TKE

t by 5 MeV, by threemassunits inA~, by 25% in ~ andby
somewhatless than 1 neutronin i~,cf. table 7.1.

9.3. Distinguishedpoints

Sincethe fissionchannelsarenothingmorethanfavorableconnectionsbetweendistinguishedpoints,
thesepoints haveto be definedwith particular care.

The minima are the simplest. Just minimize Edef as a function of all availableshapeparameters.
For saddlestake the methodof steepestdescentas describedin the previoussectionand seekthe

maximumalongone of the fission channels.
Bifurcation points arefound by following two channelsandlookingwherethey join.
For the prescissionshapesfix the neck radiusr and minimize Edef as a function of the remaining

parameters.More precisely,we workedwith two variants:
(i) We fixed the normalvector as (q

1, q,., q,)= (0.7, —0.7,0), cf. eq. (9.23), andshiftedthe initial
point (la, r0, z0) until the minimumwas obtainedat rmjn = 1.5 fm.

(ii) We fixed the normalvectoras (q1, q~, ‘ii) = (1,0,0) andshiftedthe initial point (la, r0, z0)until
the minimumwas found at rmin = 1.2 fm,

In shaperepresentationsthat containedmore thanthe threeparameters1, r andz we alsoexecuted
minimization with respectto the other parameters.Selecting1.2fm or 1.5fm as values for rmjn was
inspired by the observationthata neckis certainlybrokenwhenits radiusbecomeslessthanthe radius
of a nucleon.

Exceptfor the preactinides,the prescissionshapeof the superlongchannel could be definedas a
minimumas indicatedin fig. 7.1. Theobstacle,which hinderssucha prescissionshapefrom crashing,is
neverhigher than2MeV, cf. fig. 9.la. Since the nucleusgainsmore than10MeV on the descentfrom
the superlongbarrier, see againfig. 7.1 as well as tables8.3 and 8.5, the obstacleis easilyoverridden.

For all quantitativecomparisonsas in tables7.1, 8.5, 8.6 andin figs. 7.3,7.4, variant(i) with the full
set (2.1) of shapeparameterswas applied. Variant (ii) was usedto checkthe accuracy.Normally the
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differencesaresmallsincethe capillarity instability enforcesabruptconstrictions,that is the neckradius
r changesmuchwhile the otherparametersremain.

The shell effects, which producesuch different prescissionshapesas the standard,superlongand
supershort,displacethe onsetof the capillarity instability. Consequentlyeq. (3.3) must be modified.
We can write it as

21=raylxr. (9.24)

Undera pure liquid-drop regime rayl is 11. For the supershortchannel,however,ray! must besmaller
thanthat value andfor thesuperlongchannellarger. The liquid-drop prescissionlengthis approximate-
ly given by (5.1). If we wish to retain the liquid-drop value as a specialcase,we must scalerayl
accordingto

ray! = 11l/2~4Tcn (9.25)

where/ is the semilengthof the respectiveprescissionshape,that is, valuestakenfrom table8.5. In the
caseof 252Cf onefinds for the standardchannela rayl not far from 11, while rayl is lessthan9 for the
supershortchanneland more than 12 for the superlongchannel.

Onecan combine(9.24)and(9.25) to computetheradiusr of theprescissionshape,andendup with
valuesof 3 fm. This is significantly largerthan the 1.2 or 1.5 fm on which the variants(i) and (ii) are
based.Moreover,whenonecomparestheprescissionshapesin fig. 7.2with thosein figs. 2.2 or 3.1,one
recognizesthat the prescissionshapesfound by the potentialenergyhavea muchtoo curvedneck.This
inconsistencyis causedby the marriageof static potential-energycalculationswith dynamicrandom
neckrupture.Due to dynamics,theneckstaysthick until rupturehappenssimply becausethe matterin
the neck has no time to escape,see section3.3 and especiallyfig. 3.4 for a discussion.In addition,a
potential-energycalculation is unable to cover the overstretching.Overstretching,however, is im-
portant as was stressedin section3.4.

We tried to compensatefor all this by taking from table 8.5 only the semilength/ andthe average
fragmentmassnumberAH that can becomputedby eq. (2.17) from the shape.Thenwehadto facethe
fact that random neck rupture works with a unit radius of 1.15 fm, as pointed out in (4.1). The
Myers—Swiateckimodel [9.3], on which our potentialenergycalculationsrest, relies on 1.2249fm.
Consequently,we had to multiply all lengthsfrom the potential-energycalculationsby 1.15/1.2249to
make them meaningful for random neck rupture. We obtainedthe temperatureT at scission from
(6.11), (6.13, 6.14) and (6.7), inserting valuesfrom tables8.1—8.5. We replacedeq. (3.3) by (9.24,
9.25), and then had a straightforwardrun of the proceduresexplained in ch. 4. All the results
documentedin tables7.1 and8.8 and in figs. 7.3, 7.4 and8.4 were obtainedin this way.

9.4. Magic numbersoffission

Powerfulshell effects as observedin fig. 9.lb arefundamentalfor the formationof exit channelsin
nuclearfission. Theseshell effects mustbe causedby significant gaps in the single-particlespectrum,
and if thereare gaps,magicnumbersmust also exist. Thesenumbersare propertiesof the fissioning
nuclei. They arelisted in table 9.1.

The neutronmagic numberof the supershortchannelis easiestto discuss.Figure 9.2 displays the
neutronsingle-particlespectrume~of the nucleus258Fmas afunction of elongation.There is nothing
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:

nusnbersof fission Ada~mdicatesa ~
the caseof thestandardandsuperlongchan- _5
nels our evidence concerningneutronmagic

numbersor rangesis notsufficiently clear . ..

Channel Protons Neutrons “ ~. .._ _ -~ ~‘ —

supershort 100— 108 166 8 —

standard 90— 104 _~ ~ .

superlong 88—+94 12 13 14 1/fm 15
Fig. 9.2. Single-particleenergiese, of the neutronsalongthe super-
short channelfor “

8Fm. Theneck radiusvarieswith thesemilengthas
r/fm = 1.5— 0.67(1/fm— 15). The asymmetryis nil. Variant (ii) of
section9.2 wasusedfor thecomputation.The legendfor thevarious
typesof lines can be found in fig. 9.4.

specialwith 258Fm; all nuclei of similar sizeshowalmostthe samefeatures.You will notice two large
gaps,one at moderatedeformationswith 82 levels below it so that 164 neutronsfit in, the other gap
above the 83rd level at larger stretching.According to table 8.5 the supershortchannel rupturesat
1 15 fm. At a semilengthof 1 13.5fm the liquid-drop energiesare so adversethat even a very
favorableshell cannotinducescission.166 is thereforethe correctmagicneutronnumberfor supershort
fission [5.9,9.15].

Thingsareslightly morecomplicatedfor supershort’smagicprotonnumber.Whenwe look at fig. 9.3
we do not find a definite gap, but rathera broadzoneof level thinning. Thus 100, 102, 104, 106 and
108, but also the odd intermediatevalues,appearas valid proton numbers.Therefore it might be
appropriateto speakof a magic range 100—108,as enteredin table 9.1.

Magic rangescangenerateanexit channelin a broadspectrumof nuclei. Ofcourse,evenif a magic
numberis sharp,severalnuclidescan take advantageof its existence,but the supershortchannelin a
nucleussuchas 278[1 10] (fig. 7.5) is renderedpossibleonly by a magicrange.

This holds all the morefor the standardchannel.The limits within which its magicprotonnumber
can range are especiallywide, see table 9.1, explaining the universality of the standardchannel
throughoutmany preactinidesand all the actinides(section7.3).

The situationis differentwith the superlongchannel.We see in fig. 9.4 a majorgapat 94 protons.

::.‘~
_________________________________________

~O ___ II II IIIII~1

12 13 14 I/fm 15

Fig. 9.3. The sameasfig. 9.2, but for protons.
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~ Iinet~e m,
MeV, 1/2 ‘:‘:::;,,..,,,

3/2 . , ________________
+++++++ 7/2

~

15 16 17 18 19 20 211/fm -l6fm l6fm
Fig. 9.4. Similar as fig. 9.2 but for protons along the superlong Fig. 9.5. Contour plot of the fifty first single-protonwavefunctiors.
channel.The calculationwas made for “

6U. The superlongchannel Shownis thesquaredmodulus,andthenumbersat thecontoursgive
was parametrizedaccording to r/fm = 0.25{[(!/fm _20)2+ 0.2515/2 densitiestimes i04 fin’. This is the wavefunctionbelonging to the
— 1/fm) + 6.88. The energiese, aredistinguishedwith respectto the energybelow 102 in fig. 9.3. Note theconcentrationof probability in
three-projectionof thetotal angularmomentum = m + ,n,, which the central part.
is conservedin axisymmetricalshapes.

From this we conclude that the plutonium isotopes should have the most impressive superlong
prescissionshapes.This seemsto be true, cf. table 8.5. On the otherhand, thereis a gapbelowthe
protonnumber88, but this occursat smallerelongations.Liquid-drop energiesareherenot adverseto
hindering the nucleus from breaking. We have therefore an explanation of why the superlong
prescissionshapeis so much longer for plutoniumthanfor astatineor actinium,cf. table8.5, andneed
not resortto the argumentthat in thoselighter nuclei shell effects disappear.

Onecan associatesomemagicnumbersof the fissioningnucleuswith the magicnumbersof fragments.
The supershortmagic number 166 is almost the sum 82 + 82. In addition, the lower limit 90 of the
standardchannel’smagicrangecan be construedas 40 + 50. A similar interpretationfor the superlong
channelis impossibleas no symmetricdecompositionof 88 or 94 exists.Nevertheless,onecan say that
the magicnumbersof fission aresumsof the magicnumbersof the fragmentsplus somenucleonsfor
the neck. For the supershortchannelthis is illustratedin fig. 9.5. However, for the superlongchannel
the numberof nucleonsto be addedbecomesso large that the argumentlosescredibility.

The idea that clusters are preformed in the fissioning nucleus so that magic fragmentsare
preferentially producedwas probably first developedby Wildermuth and coworkers.They reviewed
their work in [9.17].Basedon cluster theory,the events,which we nowcall supershort,werepredicted
long before measurementswere made [9.18].Computationsusing the two-centershell model made
theseideasmore quantitative[9.19—9.21].The two-centershell model is suitedfor suchinvestigations
as it favors the formation of clusters by its preparedcenters. Studies based on Woods—Saxon
[9.15,9.16, 3.15] or Yukawa-foldedpotentials [9.22] are not preconditionedin this way and yield,
therefore,the magicclustersonly as an approximation.In this contextwewant to drawattentionto a
paper[9.23]that containsseveralimprovementsover [9.22],in particularfor the shapedependencesof
the WignerandA°termsand a more appropriatesmoothingrange.

The papers[9.15], [9.16]as well as [9.24], [3.15]and [5.9] presentresultsthat confirm eachother.
For example,the magicneutronnumber166was obtainedin [5.9] and [9.15].In addition,the standard,
supershortandsuperlongprescissionshapeswere identified in [5.9]and [9.15], with similarsemilengths.
The bifurcation points betweenthe standardand the supershortchannels,publishedin [9.16], are
situatedas shownin fig. 8.1 of this report.
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10. Homage

Much in this report is a confrontationwith the scission-point model of nuclear fission. The
differencescan be condensedinto two points:

(i) In the scission-pointmodel,the exit channelobservablesarederivedfrom an equilibrium state.
Randomneckrupturerelieson a sequenceof instabilities.

(ii) In the scission-pointmodel, the shell effects of the, possiblydeformed,fragmentsplay the
dominantrole. Multichannelfission is basedon the shelleffectsof thefissioningnucleusbeforedecay.
Despitethesecontrasts,a paperby Wilkins, SteinbergandChasman(WSC) [1.4],which advocatesthe
scission-pointideas,hasservedus as an example.This work hasseveralattractivefeatures:

WSCtheorykeepsthings as simpleas possibleand rathergoesat things. Its main goalis to ordera
gigantic body of data. Theoreticalsubtletieshavebeenput aside.

WSCtheory is basedon pictures.Such anapproachis flexible sinceadvancedformal methodscan be
incorporatedas soonasthey becomeavailable.All the moreimportant,the basicideasarespreadwith
muchmoreeasewhenonecan resortto representativepictures.Figures 1 and2 in [1.4], for example,
were the basis for thousandsof discussionson nuclearfission.

WSCtheorywassystematicallycomparedwith experiments.The paper[1.4] containsa comprehen-
sive discussionon the prominenttrendsof yields andtotal kinetic energiesthroughoutthe actinides.In
addition,manyspecialexperimentalfindings arediscussedto corroboratethe theory.This differs much
from the numerousmodelsof nuclearreactionsthatwere introducedto fit the needsof onefashionable
experiment.

One can discovermanyanalogiesin the presentwork. Figures 3.1 and7.1 arethe basic picturesof
randomneck ruptureand multichannelfission. In ch. 5, the experimentalevidencefor randomneck
rupture is compiled, including not only data from fission but also from deep-inelasticreactions.
Ch. 7 containsa surveyon the evidencefor multichannelfissionwith yields, total kinetic energiesand
neutronmultiplicities. Chapter8 comprisesmanyadditionalpoints thatcan beadducedfor corrobora-
tion.

After all, the presentwork is in many respectsa continuation of what was done with the
scission-pointmodel. The prescissionshapeis not entirely different from the scission-pointconfigura-
tion. The formercontainsthe physicsshortly beforerupture,the latter briefly afterwards.And someof
the magicnumbersof fission (section 9.4) are nothing more than the sum of the magic numbersof
the fragmentsplus somenucleonsfor the neck. These relationsare the reasonfor the considerable
successof the scission-pointmodel. If one thinks in such terms of continuation,one may say that
the presentwork is just a tracing back of the scission-pointconfigurationinto the internalsprior to
scission.

But this tracing back is not complete. We still make the difference betweenentranceand exit
channels(seethe title of this review) and cannotcomputefrom the initial settingsall oneneedsfor the
exit-channelobservables.Specifically, we cannotcalculatethe channelprobabilitiesp,,, introducedin
the eqs. (7.1) to (7.3). Hencefollowingfissionfrom the onsettill theformationoffragmentsis the next
problemfission researchshouldsolve.Someof the first stepsin this directionwere presentedin section
7.5. Theoretically,lifetime calculationsas in [10.1,10.2] will prove to be valuableexercises.

Two fundamental conceptsof scission dynamics, which will play a prominent role in future
developments,were neglectedin this report: inertia (see, however,sections3.3 and 3.4) and friction
(section3.5). We now want to quoteat least somepapersthat discussthe stateof the art for inertia,
namely [10.2],and for friction, namely [10.3, 10.4].
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