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Abstract:

Two models of nuclear exit channel reactions are examined: random neck rupture and multichannel fission. The foundations of both models are
explained, and the algorithms for their usage are given. Ample experimental evidence for the validity of these models is presented. Especially
fruitful is their synthesis. We now understand the properties of the fragments, which are produced in low-energy fission, much better than we did
four years ago.

1. Introduction
1.1. Scission versus fission

During the past 50 years progress in understanding nuclear fission was slow. Now we have one of
those small jolts of which the last happened when the fission isomers were discovered [1.1,1.2]. And
yet, the new jolt brought not only more understanding but also drastic effects. It is expected to have an
impact on applications.

Formerly fission was pictured as a sequence of equilibrium states: the ground or compound state, of
course, was deemed to be in equilibrium. The same property was attributed to the nucleus at its saddle
point. And even at the moment of most violent disintegration, equilibrium was invoked. However,
nuclear fission is rather an evolution by instabilities (ch. 3). The word “scission” expresses violent
motion somewhat better than “fission”, and so we call this report “nuclear scission”.

The second reason for taking ‘“scission” instead of “fission” is to include low-energy deep-inelastic
reactions [1.3]. When one speaks of fission, one mostly has nuclei in mind with mass numbers between
A, =200 and 260. However, some processes in the exit channels of deep-inelastic reactions resemble
those of ordinary fission, and the additional insight is in fact valuable (ch. 5). Namely, scissioning nuclei
as heavy as A , =476 were studied. Very light, extremely asymmetric and hot scissioning nuclei were
also produced in this way. All this yielded a tremendous extrapolation beyond the data that could be
obtained from ordinary fission. When these data were analyzed, it turned out that discrepancies
between almost-equilibrium theories and measurements, which had often been only 100% in nuclear
fission [1.4], boomed to 1000% in deep-inelastic reactions [1.5]. This made sure that manicuring
equilibrium models would not help.

But this too is not the main reason for the title. Actually “scission” is intended to denote the instant
of rupture. In this report more than this instant will be discussed though not the complete process of
fission. We shall leave out fission cross-sections, compound formation and say little about how the
saddle is reached [1.6]. In other words, we shall concentrate on the exit channel and hence be concerned
with fragment properties as yield, total kinetic energy, neutron multiplicity (chs. 5, 7 and 8, section 6.4)
and, to a lesser degree, gamma emission (section 8.5).

1.2. Multichannel fission

One of the new discoveries is that there are several exit channels in spontaneous fission or low-energy
induced fission (chs. 7 and 8). Leaving the compound state, the nucleus may choose between various
paths to disintegration. These paths are related to but not the same as the Bohr fission channels [1.7]
(section 7.5). The Bohr fission channels are rather metastable states over the barrier. The term
“channel”, however, suggests a guided evolution, and this is exactly what the new channels are for.

Instead of one fission barrier — maybe doubly humped — we now see that every nuclide has a system
of them. Also at rupture, instead of one nuclear shape several of them can be distinguished. Since there
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1s, in most cases, only one way out of the compound state, fluctuations disregarded, the fission channels
must fork. The new objects in multichannel fission are thus bifurcation points (sections 7.1 and 8.1).
One may find these channels by computing the potential energy as a function of the shape
parameters. In this, quantum shell corrections and advanced searching techniques are indispensable
(sections 9.1, 9.2).
Potential energy computations alone are not sufficient, as the connection to the exit channel
observables is still missing. Random neck rupture provides the link (section 9.3).

1.3. Random neck rupture

The main item in random neck rupture is the prescission shape. It looks like two heads connected by
a thick neck. Neck rupture means the neck snaps when the nucleus stretches beyond the prescission
shape. Random neck rupture means it is not decided where the neck breaks (ch. 3).

Knowing random neck rupture, one may compute the most important exit channel observables
provided the prescission shape is given (ch. 4, section 9.3). However, random neck rupture does not
itself deliver the prescission shape. Fortunately, with the fission channel calculations we can find the
desired shape (in general several of them), see ch. 9. Hence multichannel calculations and random neck
rupture supplement each other.

The union of multichannel calculations and random neck rupture has solved, among others, two
long-standing problems with the mass distribution Y(A): The average mass numbers now come out at
the correct asymmetry, and the computed variances are no longer too small (sections 7.2 and 7.3). Both
improvements were possible since the properties of the scissioning nucleus were considered and not
those of the fragments (section 9.4). For example, the magic numbers of the fragments suggest that the
average mass number should be 132, whereas nature insists on about 140 for most of the actinides.

1.4. Applications

In all, the predictive power of the theory has been increased by random neck rupture and
multichannel fission. We can compute now the neutron multiplicity »(A), mean masses A, mean total
kinetic energies TKE_, and the corresponding standard deviations o, . and o, for each exit channel ¢
separately (section 7.1, chs. 4, 6 and 9) where the accuracy of prediction decreases with the position in
the list. We can even have relative estimates of the channel probabilities p, (section 8.3).

Guided by the theoretical analysis experimenters know now how to decompose mass distributions
Y(A, TKE) as they depend not only on the fragment mass number A, but also on the total kinetic
energy TKE of that particular partition (sections 6.1 and 8.5). This is valuable, of course, for
comparisons. However, this approach is much more important for the reduction of data bases. Instead
of searching through endless files one may now obtain the same or even more information from a small
table. Similar progress has been made for the neutron multiplicities »(A, TKE) (section 8.5), and after
some time suitable decompositions for all the other exit channel observables will be available.

Still another application might be feasible: nuclear fission has long been known as the most efficient
creator of chemical elements. This fact is utilized for numerous purposes. Unfortunately, for a certain
fissile nuclide the distribution Y(A) of fragment masses was fixed. However, now it has been discovered
that even tiny changes in the entrance channel are enough to reshape the mass distribution [1.8]. In
other words, one may suppress certain isotopes and promote others instead (section 7.5).
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1.5. Historical notes, past and future

Multichannel fission and random neck rupture are the main topics of this review. As always, some
scrutiny reveals that the underlying ideas were announced long ago.

Turkevich and Niday [1.9] were probably the first who interpreted the mass distribution from
thorium in terms of two fission channels. The first substantial analysis was made then by Britt and
co-workers [1.10] who deciphered, in a way that is now recognized as being entirely correct, the yield
Y(A, TKE) of actinium. Despite this remarkable success, multichannel fission disappeared almost
completely from public consciousness. It is probably the merit of Hulet and his colleagues [1.11] that
multichannel fission has survived and prospered.

From theoretical considerations, Pashkevich discovered two fission channels in lead [1.12]. His work
was exceptional at that time since he considered the shells of the scissioning nucleus while others still
stuck to the shells of the fragments.

The first description of random neck rupture and the idea that it might be useful for the prediction of
neutron multiplicities was given by Whetstone [1.13]. Later on, Karamyan et al. [1.14] could not
explain large variances in induced fission with conventional theories. So they too proposed random neck
rupture as a possible way out and developed the first quantitative elements of the theory. That a certain
instability known from hydrodynamics, the Rayleigh instability, should be significant for nuclear
scission, was recognized first by Griffin and Kan [1.15].

The disadvantage of the present theory is its patchwork character. What one would like to do is to
solve the Schrodinger equation for the multifermion problem. Multichannel fission and random neck
rupture should then be obtained as mere byproducts. Nevertheless, the physics behind multichannel
fission and random neck rupture is elementary. It is hardly conceivable that better theories make it
disappear. See, for example, in fig. 1.1 pictures from a TDHF calculation. The pictures illustrate
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Fig. 1.1. Time evolution of nuclear scission according to TDHF [1.16]. Shown are contours of constant density in the Y-Z plane for a system
consisting of Z,, = 184 protons with A, =476 nucleons in total. The times ¢ are noted in the right lower corners of every instance. The semilengths /
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rupture in a multifermion system but do not exhibit the simplicity of the underlying physics. Instead,
the fundamentals of rupture can be derived on a piece of paper (section 3.4). To recognize how close
the results of extensive numerical calculations and of simple analytical arguments agree one can use eq.
(5.1), which is a result of these simple considerations. The equation purports that a nucleus scissions as
soon as its semilength / becomes larger than 2.4 times its (hypothetical) compound radius r. . The
hypothetical compound radius is about 9 fm for **U + ***U. The critical semilength is hence 22 fm, and
indeed fig. 1.1 exhibits rupture at a semilength of 22 fm.

Many important subjects of fission research will not be touched on in this report. The reader can
obtain information on the present status of the subject from [1.17,1.18].

1.6. Suggested reading

The paper contains three key sections, 3.1, 6.2 and 7.1, where the fundamental ideas are briefly
explained. We put great emphasis on experimental verification, chs. 5, 7 and 8 and section 6.4.
Theoretical recipes are specified in the chs. 2, 4 and 9 and section 6.3. The latter are boring, but had to
be written to facilitate checking of the computed results.

2. What do scissioning nuclei look like?
2.1. Degrees of freedom

There is no shortage in representations of nuclear shapes, see for example Hasse’s collection {2.1].
Such representations are suitable for fission if the following conditions are satisfied:

(i) A shape representation must have three essential degrees of freedom: stretching of the nucleus,
thinning of the neck and deformation to asymmetry.

(ii) A single sphere and two fragments should be among the allowed configurations.

(i) The flatness of the neck must be an independent variable.

The first two conditions are classics. Condition (iii) is more modern: without a flat neck, random neck
rupture cannot take place.

Shape representations are written in cylindrical or spherical coordinates. Spherical coodinates are not
considered because they cannot comply with condition (ii). One has to use cylindrical coordinates or an
equivalent, a fact realized many years ago [2.2]. However, most popular representations of this type
still disregard condition (iii). For example, in the representation [2.3] in which two spheroids are
connected by a hyperbolic neck, a flat neck can be achieved only for large neck radii or elongated
spheroids. Similar constraints exist for a representation based on Cassinian ovals [1.12] and also for the
(h, ¢) representation made famous in the Funny Hills {1.2]. Thus, there was a need to generalize these
descriptions. The shape representation to be introduced in section 2.4, for example, is an extension of
the approach in which two spheroids are connected by a hyperbolic neck.

There is no doubt that all existing representations permit similar generalizations. However, com-
parison of the results obtained with different representations is cumbersome if these results are
displayed as functions of technical parameters. The 4 and ¢ mentioned above are such technical
parameters; they have some relation to the shape but generally a complicated one, which is hard to
translate to other representations. Such translations, however, are unavoidable not so much because
special theoreticians favor special shape representations, but all the more because numerical or physical
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reasons force the use of different representations for different tasks. The only way out of this dilemma
is to use shape parameters with obvious geometric meanings. A suitable set is

Lrzecs, (2.1)

see fig. 2.1. The semilength | measures the elongation of the nucleus; we take the semilength instead of
the total extension since we want / to coincide with the radius r,, when the shape is a sphere. r is the
radius of the neck. As long as there is no neck, r indicates the size of the shape’s belly; again, for the
spherical “compound nucleus” r agrees with r, . z gives the position on the neck where the neck is
thinnest or where the shape is thickest if the neck does not yet exist. c is the curvature of the neck, with
positive values if a constriction exists and negative ones in the opposite case. ¢ can be visualized as the
inverse of the curvature radius, cf. fig. 2.1. To be precise, we define ¢ as 72 /r_,.. This is not more than
the multiplication with a constant and has the advantage of giving ¢ the same dimension as all these
parameters, namely length. Finally, s describes the position of the centroid. Hence z and s are both
parameters of asymmetry, and they are both measured relative to the geometric center of the shape.

In addition to their obvious meaning, the parameters /, r, z, ¢ and s have the advantage of being
defined for all shapes. Another benefit of these parameters is their limited range: for all fission problems
we are sure that they vary within a hypercube with edges between —30fm to +30 fm.

The parameters (2.1) have no means of expressing axial asymmetry. In other words, the shape
function has the form

P=p({)=pgape( &5 7,2,¢,5) . (2.2)
The angle ¢ known from cylindrical coordinates p, ¢, { does not occur.

2.2. Generalized Lawrence shapes

Square eq. (2.2) and write the right-hand side as a power expansion of {. This produces the
generalized Lawrence shapes [2.4]:

PO=W =) 2 a(¢-2), (23)
Pl
//( 1/c
,
S'—l;
21

Fig. 2.1. Visualization of the degrees of freedom /, r, z, ¢ and s. The surface depicted is a special Lawrencian shape of the class (2.3) displayed in
the coordinates p and {. Non-dimensional units are used: lengths are measured as multiples of r_,. Otherwise r- /c instead of 1/c would be the
curvature radius of the neck. The picture is taken from the movie [2.5].
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valid for —/ =< ¢ =</. The leading factor /> — ¢* provides for rounded heads. The expression after the
summation symbol serves to model the particulars of the shape.

The coefficients a, are examples of technical parameters. We replace them by the geometrical ones
(2.1). This is easy since the geometrical parameters are fixed by analytical expressions. [ is already
contained explicitly in (2.3). The neck radius 7 is defined by

p((=2)="r, (2.4)
but simultaneously we have to make sure that the shape is actually thinnest or thickest at { = z:

dp*({=2)
d¢

The curvature ¢ comes in via

=0. (2.5)

&p’(f=2) _ 2er
d§2 - rz ’ (2-6)

cn

and for the center of mass s we have

{

[ o 0yar=s | p0)ar 27)

-1
by definition. Its right-hand side can be simplified if volume conservation

i

[p0yar=1r, (2.8)

-1

is kept in mind.

Equations (2.4-2.8) impose five conditions on the Lawrence shape (2.3). To have them satisfied
takes five coefficients a, or, expressed differently, N =4 is the upper limit of the sum in (2.3). Due to
the somewhat sophisticated arrangement of ¢ in (2.3), conditions (2.4-2.8) can be evaluated succes-
sively:

2
r

Gy = 2_ 2 (2.9)
2a,z

a, = /2 _Ozz ) (2.10)
Ir’ +a,+2

az — cr rcn 4a(l alz (211)

12 . 22 >
a, = [sr2 (151° + 2100%2% + 1752%) + (2, — aI*)(601'z + 1401°2°) — a,(31° — 181"2* — 1051°2*)
— a,(6I°z + 412> + T0I°2°)| /(9117 = 91°2* — 31"2* - 351°2°) , (2.12)
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 =35sr2, +7a,l’ — 14a,°z + a,(31" + 211°2%)

_ 2.13
% 12072 + 2877 @.13)

Clumsiness in the relations between the geometrical and technical parameters is typical and often much
worse than here. To keep it aloof from discussions on physics is almost mandatory.

Looking for changes depending on the five shape parameters (2.1) means roaming through a
five-dimensional space. Without any idea what the landscape looks like, one goes astray. So for a first
orientation, rambling through a subspace is useful. One of our favorite subspaces was

Lrz. (2.14)

Equation (2.3) was kept, but N reduced to two. In this case equations (2.9) and (2.10) remain valid,
but (2.11) must be replaced by

3 3
rPo—al’+al’;

= 2.15
“ PIS+122 @15)
and equations (2.12-2.13) are cancelled. Moreover, the subspace
Lrs (2.16)

was frequented. For these strolls, the representation (2.3-2.13) was not changed at all; the missing
parameters z and ¢ were determined by minimizations of the liquid-drop energy (see section 9.1 below).

Both restrictions (2.16) and (2.14) satisfy the conditions (i) and (ii) of section 2.1 but violate (iii): a
strongly curved neck is obtained for almost all the shapes near scission.

2.3. The fragment mass number A

A look at (2.2), (2.14) and (2.16) shows that the many ways by which asymmetry can be expressed
become a problem for comparisons. The mass number of the “left-hand-side fragment”

Ze

Az,)= 3:35“ f p*({)d¢ (2.17)

cn 7,

unifies the asymmetries, and moreover we get hold of a variable that can, if p({) models two nascent
fragments, be measured directly. Formula (2.17) is usually applied to such configurations. The rupture
position z, can vary all over the neck.

2.4. A real flat-neck representation
The Lawrence shapes (2.3) are still somewhat disadvantageous because the curvature of the neck as

defined in eq. (2.6) is a local property: small ¢ entails a small second derivative of p({) only at { = z;
the neck may be quite curvy at neighbor positions. A representation which guarantees a globally flat
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neck, is

(ri—¢)'" —n={=y,
(—z+1-T
— 1) {={=¢,, (2.18)
[ri—(Zl—rl—rz—g)z]”2 L=(=2~-r,.

p({)=9r+ azc(cosh

This class of shapes is defined for —r, = { =2/ — r,. An example is depicted in fig. 2.2. Several of the
parameters met in (2.18) are familiar: the semilength /, the neck radius r, the position z of the “dent”
on the neck, and the neck curvature ¢. A new parameter is, for example, the extension a of the neck. In
fact, with a large a one may keep all higher derivatives small and hence provide for a globally flat neck.
The radii r, and r, of the spherical heads are also new, as are the transitional points ¢, and ¢, where the
three parts of (2.18) join.

Altogether we have nine parameters at our disposal. Five of them can be eliminated by trivial
requirements from geometry: at the transitional points, the shape has to be continuous and continuous-
ly differentiable:

p({=¢), (2.19)
p({=1¢), (2.20)
ap({= gl)
T : ) (2.21)
8p(§ = {2)
——GZ— (2.22)
| p/fm
10

L/fm
1 T T
5 20 G 0 35

T
5 5
o I T e e e e S

'
\W C/fm
5_

p/fm

?\
(62
/
N =

Fig. 2.2. The flat-neck representation (2.18), upper part, and the embedded spheroids (2.26, 2.27), lower part. Note the different origin of the
coordinates p and ¢ as compared to that in fig. 2.1. This entails an offset for the position z by / — r,. The shape shown here is a prescission shape
constructed for a deep-inelastic heavy-ion reaction where xenon was fired at bismuth [2.6]. Lengths are measured in femtometers and should be
realistic with an accuracy of 10%.
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are all continuous. And, of course, volume conservation must be guaranteed:

20-r

[ r@a=1r,. 2.23)

-r

For a really flat neck we stipulate

¢— minimum . (2.24)
As can be seen from eq. (2.18), ¢ =0 is generally not possible. One may now consider

Irz (2.29)

as independent variables. They are the same as in (2.14) although the shape is different.

The price one has to pay for the real flat neck are the transcendental equations (2.19)-(2.23). To
solve them is time consuming. Moreover, the second and higher derivatives of p(¢{) are discontinuous
at ¢, and ¢,. This induces a lot of precautions to keep the numerical processes convergent.

2.5. The embedded spheroids

As we have fig. 2.2 directly in view, it seems sensible to discuss another geometrical construction,
namely, the embedded spheroids. When a nucleus scissions, -it decays into fragments on which the
strong surface tension quickly smoothes all the corners and edges. Therefore we model the newborn
fragments as two spheroids in contact.

Their major axes a, and a, [not to be confused with the coefficients a, of (2.3)] are fixed by the total
length 2/ and the actual rupture point z, [z, is the variable introduced in eq. (2.17)],

a,=%(ri+z), a,=1-3(, + z). (2.26)

The minor axes b, and b, follow from volume conservation:

z, 2l-r,
2 _ i f 2 2 _ _3_ f 2
b= Ia, p dl, b= iz, p-d¢. (2.27)

! r

These formulas are valid if the coordinate origin is as shown in fig. 2.2. They thus hold for the shape
parametrization (2.18). Slight modifications are required to make them suitable for the Lawrencian
shapes (2.3).

The embedded spheroids are used to estimate the repulsion between the fragments and the energies
of deformation that the fragments have immediately after formation.

2.6. Areas of application

What can one do with the shape classes defined in the previous sections? For potential energy
calculations based on the liquid-drop model the most primitive class of Lawrencian shapes (2.14) is
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sufficient. For us it was even a major disappointment [2.7] to see how inessential the dependence on the
neck curvature c is. In addition, in potential energy calculations with shell effects many valid results can
be obtained with (2.14) or (2.16). However, the barriers become more realistic with the five parameters
(2.1), and certain details of the fission channels also change if more than three degrees of freedom are
taken into account. However, the relative insensitivity of the potential energies with respect to neck
curvature is the reason for the success of the primitive shape representations.

One area where the primitive shape representations fail completely is dynamics. To see the
instabilities underlying random neck rupture, the inclusion of the curvature c is indispensable. In this
context the representation (2.18) was so useful that numerical discomforts were set aside wherever it
seemed possible. Up to the present we use (2.18)-(2.24) to calculate measurable quantities from
theory.

3. Fundamentals of random neck rupture
3.1. What you must know to become a random neck rupturer

__Quantities such as the mass yield Y(A), the neutron multiplicity #(A) and the total kinetic energy
TKE(A) are slaves of the prescission shape. You look at the data and know the originating prescission
shape, without any computation.

It is especially simple with the total kinetic energy TKE. This quantity is an inverse measure of the
prescission shape’s length. High kinetic energies indicate a short prescission shape, low TKEs a long
one. The idea behind this is that the nucleus stretches slowly until rupture. The prescission shape is the
“last halt”. Then the rupture takes place, and Coulomb repulsion accelerates the fragments without any
hindrance.

Almost as simple is the relation of the prescission shape to the variance o>, of the mass distribution
Y(A). It too measures the prescission shape’s length, see figs. 3.1a and 3.1b. More precisely one should
say: it measures the length of the neck. Namely, random neck rupture produces different fragments by
chopping the neck at different positions. The longer the neck, the more possibilities to chop it and the
larger the variety of fragments.

The average mass number A of Y(A) expresses the asymmetry of the prescission shape. We expect
the most frequent rupture at the place where the neck is thinnest. When the prescission shape is
asymmetric, this place is shifted away from the center. Consequently, mostly one light and one heavy
fragment are produced, and a double-humped yield Y(A) is obtained, as shown in fig. 3.1d. For
decreasing asymmetry the two humps merge until a single bump remains, compare the series of figs.
3.1d, c and b.

It takes more intuition to understand the neutron multiplicities »(A). To start easy, let us first state
the relations as rules:

(1) A large average neutron multiplicity » is caused by a long prescission shape (cf. figs. 3.1a and b).

(2) A symmetric prescission shape gives rise to a multiplicity »(A), which increases steadily with the
fragment mass number A, see fig. 3.1b, whereas an asymmetric prescission shape causes a sawtooth, fig.
3.1d.

These rules are based on the embedded spheroids introduced in section 2.5 to model the newborn
fragments. Their deformations turn into an excitation, and this excitation is finally released by
evaporation of neutrons (that also other particles can be emitted will be neglected for the moment).
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0 A
Fig. 3.1. Some important correlations that a prescission shape
mediates. Shown are mass yields Y (dotted lines, right-hand-side
scales) and neutron multiplicities # (solid lines, left-hand-side scales)
as functions of fragment mass number 4. Although the pictures were
made for general illustration, they display the components that should
be relevant for the fission of “*Fm. In terms to be explained in
sections 7.1 and 8.5: part (a) shows a supershort prescission shape and
its products, part (c) the standard and part (d) the superasymmetrical
prescission shape. The figure appeared first in ref. [3.1].
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Fig. 3.2. Random neck rupture and the sawtooth shape of the
neutron multiplicity #(A). In the central part, (b), the prescission
shape valid for the spontaneous fission of **’Cf is depicted. More
precisely, it is approximately the standard prescission shape. Some
embedded spheroids are inserted. They are marked by numbers, 2
and 2', for example. The 2 and 2’ fragments are produced with a large
probability because the neck of the prescission shape is thinnest at the
2-2' position. Therefore, in part (a), arrows 2 and 2’ point at the
maxima of the yield Y(A). Rupture at 3-3', in contrast, rarely
happens due to the increased thickness of the neck. It is now most
important to notice that the split at 3-3' gives rise to fragments that
are about equal by mass but very different by deformation. As the
neutron multiplicity #(A) increases with deformation, the data shown
in part (c) become understandable. Lines represent the results of
random neck rupture while experimental material is displayed by
symbols. The figure stems from [3.2] where references to the early
experimental papers can also be found.

Since long prescission shapes make fragments with large deformations, it is now clear that long
prescission shapes give rise to more neutrons, see rule 1 above. The meaning of rule 2 is detailed in fig.
3.2: in an asymmetric prescission shape fragments are embedded with about equal masses but very

different deformations. They generate the sawtooth.

The objection against this type of reasoning is that data are given, but prescission shapes may be
constructed at will. However, since from one prescission shape at least three different observables can
be derived, the prescission shape can be construed as a means to correlate observables. The two most

important relations are:
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(i) Kinetic energies TKE are anticorrelated with the variances ¢, of the mass distributions Y(A).

(ii) The deviation of A from mass symmetry is correlated with the sawtooth of ¥(A).

There are many more relations emanating from the picture presented, but most of them are not
specific for random neck rupture. For example, it follows from random neck rupture that high TKE’s
come with low »’s and vice versa. Every model that does not disregard energy conservation reproduces
this type of dependence.

In low-energy fission, no exception from the relations (i) and (ii) is known. In heavy-ion-induced
reactions, relation (ii) is still debated, see section 5.7. However, more convincing than qualitative
relations are quantitative comparisons. To demonstrate how these can be made is the purpose of the
next chapter. However, first the physical foundations of random neck rupture will be discussed.

3.2. Scission as a sequence of instabilities

Ordinary fission needs at least three instabilities for its evolution:
(i) passing the barriers,

(ii) the shift instability,

(iii) the capillarity instability.

Surmounting the barrier(s) is the element of fission, which was considered from 1939 on, see [3.3]. Even
today it is sometimes considered as the explanation of fission, though it is only the first step of a
complicated walk. Shortly behind the last barrier the neck starts to appear. At first it still has a bump in
the middle. Under further stretching the neck becomes perfectly flat, and after this it will thin in its
central part. The curvature thus develops from negative through zero to positive values. On a flat neck,
strangulation may happen everywhere. One can state this in a different way: the position of future
constriction, which is at this stage just a tiny dent, can shift on a flat neck as in an unstable motion
[3.4,2.5]. Finally the capillarity or Rayleigh instability ramps [3.5-3.7]. This is the time of constriction.
The shift is stopped or, in other words, the asymmetry is frozen, and the nucleus disrupts.

Random neck rupture is a description that summarizes the effects from the shift and the Rayleigh
instabilities. Neck rupture occurs because of the Rayleigh instability, while the shift provides for
randomness. It takes some of Rayleigh’s formulas to calculate a prescission shape and ideas from the
shift instability to set up a suitable formula for the rupture probability.

Instabilities are by definition acts of dynamics. Nevertheless one may learn much about them from
the potential energy alone. Refer to fig. 3.3. It is a contour plot of the potential energy of a fissioning
nucleus. The unstable stretching behind the saddle and the onset of the capillarity instability can be
inferred from this picture. One just has to look for those locations where the system starts to gain
energy when it stretches or constricts.

Here it must be clear that the Rayleigh instability is by no means new in nuclear physics. Contour
plots as in fig. 3.3 have been made for decades. For example, the onset of the Rayleigh instability is
identical with Strutinsky’s critical point [3.9]. But there were two problems with earlier approaches.
First, the capillarity instability was not recognized in that characteristic twist of the potential energy.
Therefore no one realized that this twist is just effected by surface tension, Coulomb repulsion playing
only a subordinate part. As a consequence, a certain simple scaling relation [equation (3.3) below]
could not be found and hence no prescission shape defined. The second shortcoming was related to the
so-called overstretching: from the potential energy alone one reads only the onset of the capillarity
instability. At the onset, the constricting force is close to zero. Because of inertia the nucleus continues
stretching and ruptures only when the constricting force becomes strong enough.
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Fig. 3.3. Unstable stretching behind a saddle and onset of rupture visualized in a potential energy surface. The saddle point appears as a rotated x
while the onset of rupture is marked by a full circle and arrow. This contour plot displays pure liquid-drop energies in the plane of semilength / and
neck radius r for symmetrical shapes [3.8]. Lengths are given in units of the radius 7, = r,A}/’ of the compound nucleus. Energies are measured as
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multiples of the surface energy E*" = 4sry,r’, with the zero for the compound shape at [ =r=r_,. The fissility x is defined in equation (4.17).
p gy o ea
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x=0.72 belongs approximately to “"At.

The shift instability is completely dominated by inertia and cannot be visualized by pictures such as
fig. 3.3. But there are means to display it using the dynamical curvature tensor or, for simplification, by
the Gaussian curvature of a dynamical system [3.4].

3.3. The shift instability

The shift instability is elucidated best by a movie [2.5]. For a first acquaintance look at fig. 3.4.
Below one can see an idealized nucleus just after the shift instability. The nearly invisible dent on the
neck, indicated by the triangles, went to the right. Prior to the shift the triangles sat exactly over the
open square, which marks the geometrical center of the shape. The arrows inside display the velocity

Fig. 3.4. The shift instability. This is a single shot from the movie [2.5]. The vertical lines in the upper inserts indicate the actual time, namely
£=0.55 at this instant. All units are dimensionless, based on the radius of the spherical drop, on its surface energy and its mass.
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field. The point to be noticed is that almost all of the material needed for stretching comes from the
heads, while there is nearly no motion at the center. Hence large shifts of the dent take place without
sizeable physical mass motion.

In the left upper part of fig. 3.4 z (full line) and ¢ (dotted) are shown as functions of time ¢. The shift
instability is characterized by the steep rise of the full line. This is a large change of the dent’s location z
within a short time. We see this happens when the curvature ¢ moves through zero. In other words, the
shift instability takes place when the neck is perfectly flat. The later increase of z results only from
stretching. It is the same as the motion of a spot on an elastic when the elastic is strained.

The curves on the upper right-hand side are graphs of velocity dz/d¢ (full line) and of inertia m
(dotted line) as functions of time. dz/dr contains about the same information as z: the steep rise is
replaced by a sharp spike. The spike marks the shift instability. At the front of the spike the inertia,
shown by the dotted line, goes to zero. This is another way of stating that the shift instability can take
place because it needs nearly no physical mass motion. Later on during fission, the dent deepens. Its
shift now necessitates large physical mass motion. Hence the inertial parameter m also increases so that
the dent is effectively frozen in.

Two additional pieces of information can be drawn from fig 3.4: first, the shift instability happens
before squeezing and, second, the geometrical center and centroid (the two squares) stay close to each
other. The first item is in contradiction with the scission-point model [1.4], in which it is assumed that
the mass fluctuations take place after the squeezing. The second point illustrates an inadequacy of an
often used dynamical model [2.3]. In this model mass fluctuations are effected by transport through a
comparatively thin neck. But such a redistribution of masses separates the geometrical center from the
center of mass. Figure 3.4 demonstrates that such a mechanism does not prevail.

The computations that gave rise to fig. 3.4 were based on Eulerian hydrodynamics with five degrees
of freedom: the semilength /, the neck radius r, the position z of the dent, the curvature ¢ and the
center of mass s, as defined in fig. 2.1. Underlying this was the shape representation (2.3). The essential
novelty was the way in which the curvature ¢ was considered. The inertial parameters m;(l, r, z, ¢, s),
k,j=1,...,5 were computed using a procedure inspired by Hasse et al. [3.10] but with improved
accuracy [3.11]. Only surface tension was included in the potential energy U(/, r, z, ¢, s). Coulomb
effects were disregarded as being inconsequential for the problem at hand.

The complete equations of motion, as used for the trajectories shown in fig. 3.4, are

5 5 5
1 am, omyN - 9U
Zm"UZZZ(fEE_— iz, )Zfzf_Ez" (3.1)
j=1 i=1 k i k
The dynamical variables {l,r,z,c,s} are written here as {z,|i= ,5}. Dots indicate time

derivatives. The inertial tensor is not diagonal and its elements depend on the dynamical variables. This
is why the egs. (3.1) look much more complicated than Newton’s equation of motion for a mass point.
Nevertheless one may understand the shift instability from an extremely reduced expression, namely

Z=FI/m(c). (3.2)
Here z again means the location of the dent on the neck, F comprises the forces described either by the

potential energy or by the inertial terms on the right-hand side of eq. (3.1). m(c) is the inertial
parameter displayed in fig. 3.4; it is m,, in terms of eq. (3.1). The dependence on the curvature c is
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stressed because it is by far the most drastic one. Equation (3.2) says: to produce a large acceleration in
z, there is no need for large forces F. A small inertial parameter m(c) does the same. This is also the
message of fig. 3.4.

Summarizing one may say that the shift instability arises because for fission a nucleus has to change
from a spheroidal to a necked-in configuration. Trivially, on this transition the neck must become flat
or, in equivalent terms, its curvature goes to zero. If the curvature is zero, no inertia stops the shift of
the nascent dent. This effectively amplifies small fluctuations and generates the large mass fluctuations
that previous theories failed to explain.

3.4. The capillarity or Rayleigh instability

The capillarity instability accomplishes what the shift instability prepares; it takes the dent where it is
and deepens it until two fragments appear. A characteristic of the Rayleigh instability is

2=11r, (3.3)

which relates the total length 2/ of the prescission shape with its neck radius r [3.2, 3.8, 3.12, 3.13]. The
relation is so important that it became the trademark of random neck rupture. In principle, equation
(3.3) is nothing other than a slightly modified relation first derived by Rayleigh. It takes three steps to
find the coefficient 11:

(i) look for the onset of the capillarity instability,

(ii) take overstretching into account,

(iii) consider the finiteness of the fissioning nucleus.

As will be seen from the derivation, one must not claim that the magic 11 is more accurate than by
11%. But within such limits it is a quite universally usable constant. In particular, it does not depend
significantly on the Coulomb repulsion [3.8, 3.9]. Moreover, it is not perceptibly changed by rotation
[3.14], and also neither viscosity nor compressibility nor surface diffuseness seem to play a great role,
see section 3.5. Only nuclear shell effects can modify eq. (3.3) significantly [3.2, 3.15], see section 9.3.

Now to the discussion of step (i). Rayleigh studied an infinite cylinder on which a sinusoidal wave is
imposed [3.7]. Hence the radius p of the cylinder can be written as

p({) =r(e) — e cos(w{/l). (3.4)

{ represents, as in chapter 2, the coordinate along the axis of the cylinder. Equation (3.4) may be
interpreted as the representation of a shape similar to those discussed in chapter 2. ¢ is the degree of
freedom here; increasing ¢ indicates rupture. We expect a dependence on time like

e=¢g e’ . (3.5)

Instability takes place if the growth time 7 is real and positive. The other symbols in (3.4) were chosen
to conform with other sections of this report: r, in particular, will be identified with the radius of the
neck and / with the semilength of the scissioning shape. An infinite jet has, of course, no length.
Therefore Rayleigh’s papers only contain the wavelength A. However, the replacement A =2/ is
obvious.
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In eq. (3.4) one must keep in mind that r depends on ¢. This is unavoidable since the volume

I}

7 f p*(£)d¢ =2mlr’(e =0) (3.6)

=1

must be conserved. Although this remark seems trivial, it is important for understanding the mechanism
of the capillarity instability: every instability needs two forces that balance each other at its onset. For
passing the barrier, see (i) in section 3.2, this is Coulomb repulsion acting against surface tension. But
in the capillarity instability both forces come from surface tension alone. When one disregards eq.
(3.6), one of these forces is lost.

The two forces that constitute the capillarity instability are these: a sinusoidal deformation of the
surface enlarges its area and therefore costs energy. The increase of energy is all the larger, the smaller
the wavelength; more precisely it is proportional to /. On the other hand, the surface deformation is
necessarily accompanied by a reduction of the mean radius since otherwise volume cannot be
conserved. This reduction is equivalent to saving surface energy and is independent of the wavelength.
Therefore, for short wavelengths the increase of surface energy by deformation will dominate, leading
to stability, while for large lengths the decrease due to volume conservation dominates, leading to
instability. Since both effects are proportional to the surface tension, the surface tension coefficient
cancels so that the border of stability is determined purely by geometry.

Let us make this argument quantitative. First calculate the potential energy

!

Us) =2y, | ol + @pla)1?aL (3.7)

=1

where v, = 0.9 MeV fm ” is the nuclear surface tension. Neglecting all terms of third and higher order in
¢ produces

Ue) ~4my,r ] + % 2mn - [(7’7’) - 1] . (3.8)

The factor after £/2 is the one that matters. It is customary to denote it as the stiffness
[[(ar)
C =21y, ST - 1]. (3.9)

The stiffness takes a negative sign if rr <I. With this condition the jet gains energy when a constriction
starts to develop.

20=2mr (3.10)

thus marks the onset of instability.
Just behind the onset, the instability-creating force is still very small. So it takes much too long until
a sizeable squeezing is reached. In step (ii), therefore, the dynamics must be regarded. The simplest
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equation of motion is
Mi=—Cs. (3.11)

The stiffness C is given by (3.9). Finding the inertial parameter M requires the solution of a
hydrodynamical boundary value problem.

To this end one determines the velocity potential @(p, {) from Laplace’s equation as a product of a
modified Bessel function I,(wp/l) [3.16] with a cosine cos(w{/l), calculates from it the velocity field
v = -V, fixes the still unknown multiplicative constant so that the motion at the surface conforms with
eq. (3.4), namely

o

O § |
o v, = £COs =, (3.12)

l

and evaluates the kinetic energy according to

1
P odv=-2 ®v-dA~—mpr | P di . 3.13
2 2 or | U,

(piece of jet) (surface) -1

Here p, denotes the mass density of nuclear matter; in combination with the nuclear unit radius r, we
have

Pra=25%10"* MeV fm s> .

The inertial parameter is obtained from the kinetic energy by splitting off the factor of £%2:

I(wril)

_ 2
M= 2mpor L I D) (3.14)
where the prime indicates differentiation with respect to the argument.
The growth time of the instability follows from eq. (3.11) in the most elementary manner
r=(-MIC)"?. (3.15)

Consider this expression as a function of /: beyond the onset of instability, the stiffness (3.9) becomes
negative and absolutely larger. Therefore, to reduce the growth time, it might seem favorable to
increase / over all bounds. But at the same time the inertia (3.14) decreases. In other words, waves that
are too long are also not favorable since more and more mass has to move. A simple discussion of the
function (3.15) reveals that it has a minimum at

20=1.435X 27r ~9r . (3.16)

Hence overstretching makes the droplet 1.435 times longer than what one got for the onset.
After the minimum is fixed, one may use eq. (3.15) and the constants given above to estimate the
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rupture time:
71107 s = [1.5(r/fm)’]""* . (3.17)

Generally times shorter than 10™*' s are found.

Finally, in step (iii), finiteness corrections have to be established. In the simplest way one can do this
by adding two lids at { = —/ and { =/ to the surface defined in (3.4). The potential energy (3.7) now
reads

{

U(e) =2my, f pl1+(dp/dQ)* ]2 d¢ + 2my[r(e) + €] (3.18)

=

The stiffness (3.9) is modified accordingly,

I[({mr\> r
C=27770 ; |:<T> + 7 - 1] . (319)
The onset is obtained by equating the expression in brackets to zero. This yields
20=1.172 X 27r =~T.4r (3.20)

which is to be compared with eq. (3.10).
The inertial parameter (3.14) suffers no modification from finiteness, as can be seen from the middle
expression in eq. (3.13): at the lids, the velocity v is perpendicular to the vectorial surface element dA.
Neither overstretching nor finiteness changes the value of 2//r valid for the infinite jet at the onset
much. Therefore one may muitiply the factors in (3.16) and (3.20) to obtain the change due to both
perturbations together. It amounts to 1.435 X 1.172 X 27r = 11, the number we proclaimed in eq. (3.3).

3.5. The Rayleigh instability under more general circumstances

Rayleigh’s criterion experiences only slight modifications if more complexity is taken into account.
For instance, if non-axisymmetric constrictions are admitted [multiply the last term in (3.4) by
cos me], the stiffness (3.9) becomes

C=(1+8,,)my, é [(3’1—’)2+m2—1}. (3.21)

It can change sign only if m=0. Thus we conclude that there is no capillarity instability for
non-axisymmetric modes.

Friction expressed by the kinematic viscosity ¥, in the Navier-Stokes equation leaves the range of
instability unchanged. Its main effect is to slacken the growth and to shift the most unstable mode
towards smaller values of 7r/l. The lowest order corrections in v, read {3.17]

miL (wril)  (mri)(wril)
(ariD (wrll)y I (@rll) ] (3.22)

r(n) =1+ 20 [2[m2 + (wrily’] -
r
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and

1/2
_ Po .
1 L )= -0, 8111/0(7 r) ; (3.23)

0

ar/l and 7 have the values given in egs. (3.16) and (3.17), respectively. When we take a tradable value
for viscosity 1, ~6 X 10> MeV fm > s [3.18], the kinematic viscosity is about n,/p, = v, = 10" fm*s ™"
so that we end up with a reduction of 7r/l of about —15%. This is not small, but we shall see that it is
partly compensated by surface diffuseness.

The compressibility «, alters the region of instability much less. The smaller inertia hurries the
growth, and the most unstable mode is shifted to smaller values of mrr/l. The lowest order corrections in
powers of «, are [3.19]

2 1] '
_ Ko Do < L (wrll) ) I (arl)
o) =7+ = \ L (D)) T (el (3:24)
and
T (k)= T —0.052 2 (3.25)

With r =3 fm and Blaizot’s value for «, [3.20], k,7,/r is about 0.1 and the shift of 77/l is less than 1%.
Even smaller is the change of the growth time.
The effect of a finite surface diffuseness (size a), was studied using the Krappe-Nix potential [3.21]

U=-2y, —a‘gfl“) L W)= f ar g 2L I'_T 'a) (3.26)

where the integrations extend over a piece of the cylinder with length 2/. In the limit a—0 the
conventional surface energy U = v, X surface is recovered. The stiffness is found to be

c=+amy H[(2) +me -1

U =R I o). om

For the onset we find

=742 ol(2))

hence in contrast to (3.23) a shift to larger values of wr/l. With a realistic value for the surface
diffuseness we have a/r =0.65/3=~0.22. This increases mr/l at the onset [cf. eq. (3.10)] by +11%.

Résumé: For the Rayleigh instability in nuclear matter we can forget about non-axisymmetric
disturbances and compressibility. The viscosity and diffuseness are at the limit of being significant, but
their effects on the length scales almost cancel each other.
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4. Formulas from random neck rupture for applications
4.1. Unit radius and surface tension

We have to profess now how the prescission shape is actually calculated, and how one may obtain
from the prescission shape mass distributions, the total kinetic energies and neutron multiplicities.
For these calculations, two nuclear constants will be necessary, namely the radius unit

ro=1.15fm (4.1)

i )
and the surface tension coefficient

N 2
¥ = 0.9517[1 - 1.7828(—3’:—4—”'> } MeV fm . (4.2)

cn

N.., Z., and A_ are the neutron, charge and mass numbers of the compound nucleus.

The unit radius (4.1) is a charge radius, rather a small value. It was taken to facilitate accurate
computation of the Coulomb repulsion between the newborn fragments (section 4.4 below). The
formula (4.2) for the surface tension was chosen because it is one of the most familiar expressions
[4.1, 4.2]. It will be used for the rupture probability (section 4.3) for which we have in any case only an
approximate formula. For the precise calculation of binding energies (4.1) and (4.2) do not fit together.

We shall be concerned about this in sections 4.5, 9.1 and 9.3.
4.2. The prescission shape

Let us return to the flat-neck representation introduced in section 2.4. From the free shape
parameters /, r and z (2.25) we can eliminate the neck radius r with Rayleigh’s relation (3.3). Next we
replace the location z of the dent by the fragment mass number A as explained in section 2.3.

To fix the remaining degrees of freedom A and [, two strategies exist. Either we find them from
experimental data, associating with A the measured average mass number A and with / the average
total kinetic energy TKE, cf. sections 4.3 and 4.4. Then we obtain the variance o of the mass
distribution and the neutron multiplicity »(A) as results. In some cases to be discussed in sections 5.3 to
5.7 it is sensible to put o, in and to extract TKE from random neck rupture.

Otherwise, we find A and / by microscopic calculations as described in ch. 9. Details relevant for the
present context are intimated in section 9.3.

The equations (2.19-2.24) defining the flat-neck shape (2.18) are maliciously non-linear. Especially
bad is the dependence on the curvature c. An initial value for ¢ can be estimated from a parabola
through the points (¢;, p({,)), (z +1—r,, r) and (&, p({,)), see fig. 2.2. But {; and £, are a priori not
known. Therefore we substitute these points by the approximations (0, R,), (z,7) and (2! - R, -
R,, R,). R, and R, are replacements for r, and r,, which are defined by

R =r, A", R,=r(A, - A", (4.3)

with A and A_, — A as the expected mass numbers of the fragments. There is a left-hand side parabola
with vertex at (z, r), through (0, R,) and with curvature ¢’. Its equation is R, — r =(c'/2)z>. The
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right-hand side parabola gives rise to the equation
R,—-r=(c"12)2l-R,—R,—2)".
Taking the roots of these equations, adding them and estimating ¢ =~ ¢’ = ¢” gives

R, +R,—-2r+2[(R, - N(R,—1n]""?
(2l-R,-R,)

c=2c, (4.4)

if c,,, = 1. Of course, a parabola does not represent a flat neck. Hence ¢
that c_, values from a broad range

o1 <1 is necessary. We found

0.03=<c,, =03 (4.5)
give suitable starting values [3.12].

Another difficulty arises in applications to heavy-ion reactions. Here the radii R, and R of projectile
and target are known. One wants to find the prescission shape as a function of these entrance-channel
variables. To explore this, the “neck contribution policies”

R -1} (R,, )#

———— —_— 4-6

Ri-r, \R; (4.6)
with

p=1,2,3 (4.7)

are useful. They mean that the share of mass from the neck, which a fragment receives, is proportional
to the projectile’s radius (u =1), to its surface (u =2) or to its volume (u =3). Fortunately, the
results do not depend significantly on the choice [3.13]. See section 5.3 for a discussion of the physics.

One fixes now ¢, =0.1, say, enters / and A as specific for the physical problem and solves the
non-linear system of eqgs. (2.19-2.24) and (3.3), replacing A by z_ = z using (2.17). If A has not the
meaning of the average mass number of the fragments but rather of the mass number of the projectile,
one disposes of (2.17) and takes (4.6) instead. This defines the prescission shape (2.18).

4.3. The yield Y(A)

Without fluctuations, the neck would always rupture at the same position, namely at z. With
fluctuations, amplified by the shift instability as explained in section 3.3, a slightly different shape is
generated so that the neck can break elsewhere. We need the probability that the neck ruptures at an
arbitrary position z,. For this one should compute the potential energy E(z,) of the slightly modified
shape and compare it with the potential energy E(z) of the most probable shape [3.8]. To simplify this,
we replace the difference E(z,) — E(z) by E_,(z,) — E,,(z) where E_(z,) :=2my,p"(z,) denotes the
energy to be spent for a cut of the most probable shape at the position z,. Note that we do not have to.
cut; this is accomplished by the capillarity instability. E_, was introduced only for computational
convenience.
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Hence our ansatz for the rupture probability is the Boltzmann factor
W(A) = exp {—2my[p’(z,) = P’ ()T} . (4.8)

The fragment mass number A can be computed from the rupture position z, according to (2.17). T is
the temperature of the prescission shape. For applications in spontaneous fission we estimate T from
the excitation energy E* which the nucleus gains as it slides down to scission (see sections 6.2 and 8.2
for details). For applications to induced fission or deep-inelastic reactions energies brought in via the
entrance channel are duly taken into account. The theoretical yield to be compared with the measured
one finally follows from

Y(A)=WA) + WA, — A). (4.9)
4.4. The total kinetic energy TKE(A)

The prescission shape decays into fragments, which are modelled by the embedded spheroids
introduced in section 2.5. The energy V., + V,,. of repulsion between the newborn fragments consists
of a Coulomb and a nuclear part.

The Coulomb part is calculated according to

2

e Z(Z,,— Z
VCou == ( Cl" ) S(x19x2) ’ (410)
where e; =~ 1.44 MeV fm is the square of the elementary charge. The charge numbers Z and Z_ — Z of
the fragments are calculated from the mass numbers A and A_ — A by a search for the minimum
potential energy of the postscission configuration. They can also be obtained, with sufficient accuracy,
from the assumption that the charge density is constant everywhere in the scissioning nucleus. The

factor S(x,, x,) contains the correction due to the spheroidal deformations. It is calculated according to
[4.3],

R 3 3 Q2m+2n)! .. .
S %)= 2 2 o T 3) @nt1)2n+3) 2mal 12 (4.11)
The quantities x, are related to the eccentricities ¢, of the fragments by
_a,‘gi B bi>2:|1/2
X, = [’ 8i—|:1 (; . (412)

t

The semiaxes a, and b, are defined in (2.26) and (2.27), respectively. The expansion (4.11) is
numerically more convenient than the closed form [4.4].

The nuclear interaction energy V, . between the nascent fragments is evaluated using a proximity
formula

bib3

V..=4 0)——"—. 4.13
nuc 7770¢( )a1b§+a2bf ( )
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The b’/a, are the curvature radii at the tips of the spheroids, and ¢(0) = —1.7817 fm is the value of the
proximity potential function [4.5] for zero distance between the surfaces.

To obtain, at last, a measurable average total kinetic energy, one uses
TKE(A) =V, +V, .+t K,. (4.14)
Our results (see sections 5.2, 7.2 and 7.3) are consistent with the assumption that the prescission kinetic
energy K, is of the order of 10 MeV; it seems smaller in low-energy fission, but might be somewhat

larger in cases where fission must be enforced by high excitation. Therefore, eqs. (4.10) and (4.13)
suffice to find TKE(A). Averages over mass numbers are obtained by summing with the weight (4.8).

4.5. The neutron multiplicity v(A)
The available energy in the newborn fragments is
E*(A)=E, (A)+E*A/A_, . (4.15)

E,.;(A) denotes the deformation energy of the fragment with mass number A, and the last term in eq.
(4.15) is the share of the thermal energy that the fragment receives according to equipartition.

The prescission excitation energy E? is the same that enters the prescission temperature 7. See the
remarks that follow eq. (4.8).

To establish the function E, (A), one goes back to the embedded spheroids (section 2.5) and has
hence to know the potential energy of a spheroidally deformed fragment:

s arcsin £ + (1 — 82)”2 (1- 82)1/3 146
Eaade) = ESE?(A){ =y 1+2x| —; ln( 1- g) =1f1- (4.16)

The fissility x is defined by

h
x=E¥

Cou

(A)/2E®"(A), (4.17)

sur

and the eccentricity ¢ was introduced in eq. (4.12). EX"(A) and E¥" (A) denote the surface and

Coulomb energies of a spherical nucleus. For their calculation we have strictly adhered to the

prescriptions given in [4.1, 4.2}, in particular to the much too large radius constant r, = 1.2249 fm.
As we now know the excitation energy E*(A) of a newborn fragment, we can calculate the neutron

multiplicities ¥(A) from the implicit equation

7(A)

E*(A)= 2_) (S, +m,)+E,. (4.18)

The separation energy S, of the neutrons may be taken from some mass formula, for example [4.1, 4.2],
or from atomic mass tables [4.6]. The average kinetic energy m, of the neutrons is 3 times the
temperature of the fragment, which in turn can be calculated from the excitation energy (4.15). Finally,
the residual energy E, that the y-rays carry off is about half the separation energy S; , ., of the first
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non-evaporated neutron. For most purposes

E*(A)/MeV

i) =~

(4.19)
is good enough.

It must be stressed that the last two equations are not valid in high energy fission where excitation is
sufficient for the evaporation of charged particles. There one must use evaporation codes and compare
the excitation energies (4.15) rather than neutron multiplicities.

5. Evidence for random neck rupture
5.1. Rupture and randomness

The instabilities mentioned in section 3.2 are all based on continuum mechanics. It is not clear from
the beginning that these mechanisms also apply to quantum objects such as nuclei. But there is evidence
for the shift and capillarity instabilities in nuclear fission. To recall, the capillarity instability creates
tupture, while randomness is activated by the shift instability. Though it is not possible to isolate the
effects from these two mechanisms perfectly, one may group certain experimental results as pertaining
more to one instability than to the other. Thus the data presented in sections 5.2 and 5.3 mainly reflect
the mere rupture, whereas those in the sections 5.4, 5.5, 5.6 and 5.7 correspond rather to randomness.

5.2. The extended systematics of the total kinetic energy

Averaging over the mass numbers A makes from the function TKE(A) a number, the average total
kinetic energy TKE. One of the great achievements of nuclear fission research is Viola’s systematics
[5.1], namely TKE « Z? /AL’ for nearly all the known compound nuclei. At first this scaling seems to
be trivial, but at a second view it turns out to be surprising.

Namely the only serious contributor to TKE is the Coulomb energy (4.10), and in V., only the
factor Z(Z_, — Z)/I varies significantly. Z(Z_, — Z) averaged, on the other hand, is proportional to
Z? . Yet it is odd that the distance I goes just as A, and does not depend on Z_. Barriers, for
example, depend crucially on the charge, and therefore one should expect that the scissioning shapes
just before acceleration also look different for different total charges.

Equation (3.3), that is the Rayleigh instability, solves this problem. In geometrical terms, eq. (3.3)
conveys that all the linear dimensions of the prescission shape scale with A)>. Approximate the
prescission shape by a cylinder. We then have by volume conservation 27rr’/ < A__ and because of (3.3)
I A and r= AL’. The reason for the simple scaling is, of course, that the capillarity instability is
conditioned exclusively by surface tension, as pointed out in section 3.4.

One may derive more than proportionality. The argument discussed in the previous paragraph for
the finite cylinder yields //r.,, =2.7. Realistic shapes can store a part of their mass in the heads.
Therefore both neck radius and length are somewhat smaller than for the cylindrical case. From fig. 2.2
one can see that

1=2.4r,,. (5.1)
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If symmetric scission is presumed, we may compute the semiaxes of the embedded spheroids by (2.26)
and (2.27), find the x; and ¢, by (4.12), and have then from (4.10)

_ 1.44Z7 5(0.42,0.42)

Vo MeV Tx 247 AT (5.2)
for the Coulomb repulsion and from (4.13)
V. ./MeV=4myd(0) X 2.4 ’r AL (5.3)

for the nuclear attraction. With r,, from (4.1), vy, from (4.2), $(0.42,0.42) from (4.11) and ¢(0) after
(4.13) we can add (5.2) and (5.3) according to (4.14) and find

TKE/MeV=0.14Z2 /A’ - 4Al" . (5.4)

Since, crudely, Z_ x A_,, the dependence of the second term on mass is weak in comparison with that
of the first. Therefore, we used

TKE/MeV=0.14Z2 /AL - 30, (5.5)
which is accurate for heavy nuclei (250 < A, =476) [3.13]. For lighter nuclei, deviations show up, see
fig. 5.1. There it is perceptible that the nuclear attraction decreases with decreasing mass, as predicted
by eq. (5.4). However, the important feature in (5.4) and (5.5) is the minus sign for the last term. This
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-
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Fig. 5.1. Generalized systematics of total kinetic energy. A similar graph was presented first in [3.13]. The thick line displays the theoretical result
(5.4), which is not a pure function of Z> /A%, The missing dependence in the last term was taken from the valley of -stability. The term —4A..
differs from —30 sizeably only for Z2 /A’ <1000. Therefore eq. (5.5) is also well represented by the thick line. The broken line is from Viola's
pioneering work [5.1]. Total kinetic energies are denoted here by TKE,,, to comply with the requirements from deep inelastic collisions (DIC).
TKE,,, is the smallest total kinetic energy measured in deep-inelastic reactions, while it coincides with the usual TKE in fission. In DIC, very
asymmetric fragment pairs can be produced. One has to multiply the measured vatue of TKE,,, by Z2 /[4Z(Z,, - Z)), if Z denotes the average
charge number of the lighter fragments, before it is entered into this graph. This is to correct for the different Coulomb repulsion of the two unequal
charges instead of the symmetric scission presumed in the derivation of eq. (5.4).
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means that nuclear forces cause an attraction. The sign is therefore not free for disposition. In fact,
recent evaluations [5.2] of fission data show that Viola’s original positive constant +22.2 is too large.

Evidence for scaling laws is usually considered valid only if the scaling parameters vary over at least
one order of magnitude. Even today this cannot be attained from fission data alone. But when
deep-inelastic data are included, the range is exploded by a factor of three, see fig. 5.1. The evidence
for the random neck rupture result (5.4) is all the more convincing as it reproduces not only the
exponents but also the absolute values.

In egs. (5.4) and (5.5) mass fluctuations are not taken into account. But one can do this with the

random-neck-rupture program described in ch. 4. To this end one takes the average mass A from

experiment and enters according to eq. (5.1) //fm=2.4r,Al'> and A= A as first estimates. The

program then yields a prediction ¢, which is usually close to the experimental value o, To increase
perfection, / is modified until the primed quantity coincides with the bare one. Such “individual”
predictions of TKE are presented in tables 5.1 and 5.2.

Table 5.1
Total kinetic energies from theory (TKE') and experiment (TKE®) for common fission. The first column
describes the reaction by which fission was induced. Consider, for example, the first reaction: protons with
1000 MeV kinetic energy in the laboratory were a nickel target; then, on the average, three protons and six
neutrons escaped before an iron nucleus fissioned. The variances o, of the mass distributions come from
the measurements. They were reproduced by random neck rupture and served as a basis for the
computation of (TKE'), as explained in section 5.2. The question marks in the fourth and fifth lines
indicate that these values had to be estimated. However, even a mistake by 50% would not change the
(TKE') by more than 10 MeV. For ***Fm(sf) only the so-called high energy or supershort component was
taken into account, cf. section 7.2. Some error estimates of the experimental data, which are given with the
customary * symbols, should convey an idea of the accuracy of such measurements. Due to the
simplifications and inaccuracies discussed in sections 3.5, 4.2 and 4.4, predictions made by random neck
rupture cannot be better than 5 MeV

Reaction TKE' (MeV) TKE® (MeV) o References
p(1000 MeV) + *Ni—> 3p + 6n + Fe 9 34+4 100 [5.3]
p(600 MeV) + '“Ag—3p + 6n + *Rh 40 65225 200 [5.4]
p(600 MeV) + *La—3p + 8n + Cs 54 88.6+ 4.9 550 [5.4]
*0(166 MeV) + '“'Pr-> ""Ho 9 115 130(?7)  [5.1,3.12)
(125 MeV) + P Tb— 'Lu 103 121 130(?7)  [5.1,3.12]
(120 MeV) + *Yb— *°0s 115 124 199 {5.5,3.12]
2C(136 MeV) + " Yb— #*0s 115 124 211

2C(151 MeV) + *Yb— %05 115 128 215

ZC(165 MeV) + ' Yb— "*°0s 114 127+5 235+ 14

*A1(205 MeV) + '“Tm~>n + »Fr 144 1518 350 (5.6]
*0(93 MeV) + 05— *Po 141.4 1471 135 [5.7,3.12]
°0(105 MeV) + *20s— **Po 140.9 147.0 154

°0(106 MeV) + **0s— **Po 140.6 144.4 i61

*0(119 MeV) + 05— **Po 140.2 146.8 180

a(40 MeV) + *®Bi— *VAt 144 146 94 [5.5,3.12]
a(60 MeV) + *®Bi— *PAt 144 147 135

a(65MeV) + *Bi— *PAt 144 150 131

a(80 MeV) + Bi— *’At 144 148 152

a(100 MeV) + *®Bi— "At 144 150 159

a(120MeV) + *®Bi— " At 145 1524 153+7

22CE (sf) 186 1861 43 [5.8,3.2)

“*Fm (sf) 236 yxy) 14 {1.11,5.9]
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Table 5.2
Total Kinetic energies from theory (TKE') and experiment (TKE®) for deep-inelastic reactions. The table
is organized as table 5.1. Special features are as follows: the superscripts Z in the fourth column indicate
that only charge variances o}, were measured. They were converted into mass variances according to eq.
(5.6). Another peculiarity is marked by the asterisks. Namely, the experimentalists who measured the
reaction **Mo + **Mo introduced a novel TKE* quantity [1.5]. It arises from ordinary TKE by removing
the Z(Z,, — Z) dependence that occurs in the Coulomb repulsion (4.10). The theoretical quantity was
computed with the corresponding modifications

Reaction TKE' (MeV) TKE® (MeV) a’ References
Ar(270 MeV) + Mo 61 6129 190+40  [5.10,3.13]
“A1(270 MeV) + Mo 61 54+14 140+40  [5.10,3.13]
*Mo(1680 MeV) + **Mo 137* 180 = 30* 2400 [1.5]
*Kr(515MeV) + "“Er 193 194 3007 [5.11,5.12,3.13]
#Kr(703.5MeV) + '“Er 182 198 675° [5.11,5.12,3.13]
Sm(1000 MeV) + '“‘Sm 299 313 283+30  [5.13,5.14,3.13]
*4Sm(970 MeV) + **Sm 279 298 357+36  [5.13,5.14,3.13]
120%e(940 MeV) + **Bi 349 326 250 %1007 {5.15,3.13]
4Xe(1130 MeV) + *Bi 335 363 51050 [5.16,3.13]

X e(1420 MeV) + *Bi 322 286 960 £ 100°  [5.17,3.13]
*%8Pb(1575 MeV) + *Pb 508 503 2307 [5.18,3.13]
Z8U(1766 MeV) + 22U 592 593 550% [5.19,3.13]

Evidently, random neck rupture gives accurate predictions for ordinary fission (see *>Cf in table
5.1), reasonable ones for the heavy systems (table 5.2), but only moderate results for the fission of very
light nuclei (table 5.1). However, relative to the range of about 600 MeV the deviations are not larger
than 5%.

Concerning the dependence of TKE on the energy of the incident particle, one can only say that it is
very weak both in experiment and theory, cf. Table 5.1.

Most reactions cited in the tables import a great deal of excitation energy into the scissioning nuclei.
Just because of that they were selected. Namely, in such reactions quantum shells are smeared out so
that random neck rupture with its concepts from continuum mechanics should be valid. Two exceptions
are the spontaneous fissions of californium and fermium. These examples suggest that random neck
rupture might also be useful when quantum effects are present. This will be exploited widely in chs. 7 to
9.

For fission of astatine and similar nuclei excellent data have become available recently [5.20]. They
confirm the conclusions that can be drawn from the materials presented here.

5.3. The neck recollects asymmetry

One of the central problems of deep—inelastic heavy-ion reactions was the invariability of the average
mass. If, for example, a "**Xe projectile was fired at *”’Bi, then, on the average, a fragment with mass
number of about 132 came out, in spite of giant mass fluctuations. This invariability was a miracle until
it was shown by eqs. (4.6), (4.7) that it is a property of neck rupture: the nucleons that projectile and
target contribute to the common neck are on the average returned to the fragments. At present no one
knows the true contribution policy, but the independence of the results on the parameter u shows that
this does not matter. For instance, if the projectile contributes many nucleons it pushes the smallest
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diameter of the neck far away. Therefore, at rupture a large part of the neck goes back to the former
projectile. If the projectile contributes less, it also receives less at scission. In this way the neck acts as a
memory.

One of the few discriminators between deep-inelastic collisions (DIC) and fission is hence the
average mass number of the fragments. For fission, the reaction goes through a true compound state.
Memory of initial asymmetry is lost there so that the average mass number of the fragments appears at
mass symmetry, provided shell effects do not interfere. For DIC, a compound state is never reached.
Target and projectile just touch to make a neck, although a massive one. The initial asymmetry is thus
preserved on the average.

Discrimination between DIC and fission becomes uncertain for A, =260. In such systems com-
pound nuclei are very unstable, in particular if they are excited. Therefore, a smooth transition from
DIC to fission is observed. The phenomenon was investigated with much care (see, e.g., [S.11} and
[6.22]), but it is not typical for DIC. If A, <230 and the projectile mass differs from that of the target,
fission fragments can be separated from DIC products. For A _, > 300 fission fragments do not exist
since Coulomb forces prohibit a compound state.

These relations are illustrated in fig. 5.2. In three of the four cases it demonstrates the invariability of
the averages in spite of increasing variances, according to measurements and according to random neck
rupture. The Ar+ Mo and Kr + La systems are below A =230, Xe + Bi is above A_, =300 and only
Kr + Er is in the mixing zone. Therefore, it is understandable that the random-neck-rupture calcula-
tions that were made for pure DIC gave fair results in all cases except for Ke + Er.

To judge the quality of the predictions due to random neck rupture, one has to look for the
achievements of the most successful competitor. This competitor is the diffusion or transport model,
several versions of which have been developed in the past, see, e.g., [5.22] and [5.23]. Diffusion models
describe the approach to that equilibrium to which scission point models such as [1.4] are limited.
Diffusion models are hence extrapolations of equilibrium theories, without a qualitative change of the
physical ingredients. Typical results of diffusion calculations are shown in fig. 5.2 by the dotted lines.
The crux with the diffusion models is that they cannot attain the large measured variances even when
they are tuned to do so. But most striking is the invincible drift to symmetry at the larger variances.
Even for the mixed Kr+ Er system the random-neck-rupture prediction is better than that of the
diffusion model. Details can be found in [3.13, 3.14].

The merits of random neck rupture are limited here to reproduce the correct correlation between
variance and average. The variances were not determined independently. In order to learn how the
bold lines in fig. 5.2 were computed, you might wish to reread section 4.2, in particular the final part.
There it was stated that the prescission shape has only two degrees of freedom: its semilength / and its
asymmetry, expressed by the mass number A, of the projectile. While A, was given immediately, we
had to derive the length / from the mass variance o, or, when this was not available, from the charge
variance o, via

ol =(AlZ, )05, (5.6)

The mass distribution and hence also the average mass number of the fragments were then obtained
from the rupture probability (4.8). If you want the average charge number Z of the fragments, this can
be obtained from

Z=(Z,/A)A (5.7)

or from the minimum-potential-energy approach described in section 4.4,
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Fig. 5.2. Correlations between averages and variances of the fragment mass distributions in several heavy-ion reactions. In all the parts, the
experimental data are distinguished by open symbols and partly by error bars. Thick or dotted lines depict the theoretical results. The thick lines are
predictions of random neck rupture calculations, the dotted lines are output of a diffusion code. The thin lines in parts (c) and (d) connect the
experimental data to make the trends more obvious. Mass symmetry is pointed out by the arrows. Actually in parts (b)—(d) the mass quantities are
replaced by charge observables, but because of equations (5.6)-(5.7) conversion is so straightforward that all the graphs convey essentially the same
information. Part (b) contains data from three experiments, namely lanthanum bombarded by krypton at 505 MeV (triangles), 610 keV (squares),
and 710 MeV laboratory energy (circles). Part (c) displays two sets, krypton at incident energies of 515 MeV (triangles) and 703.5 MeV (circles). Part
(d) again shelters three experiments, xenon at 970 MeV (triangles), 1130 MeV (squares), and 1420 MeV (circles). The theoretical curves are
terminated with corresponding symbols to indicate to which experiment they belong. The experimental data were taken from [5.10], [5.21],
[5.11,5.12] and [5.15-5.17}, respectively. The theoretical data were shown first in [3.13] and [3.14].

Hence the neck can make large mass variances without changing the average mass. For DIC this is a
physically important discovery.

5.4. The neck generates mass fluctuations

The huge discrepancy between measured mass variances and those calculated using diffusion models
was the reason for us to develop random neck rupture. In fission, the same discrepancies were known
long ago, but since they were factor-2 errors, they were disregarded. For example, in table 5.1 the value
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of o, observed in the fission of *"*Fr is about 1.5 times too large for an equilibrium theory [5.6]. More
or less the same is true for the o, of *>Cf(sf) [1.4]. In addition, a dynamical model [2.3] that includes
more than equilibrium fluctuations had problems when it was compared with the « + Bi data shown in
table 5.1. However, these two were only factor-2 errors so that one could hope to cure the disease by
quantitative improvements. But some deep—inelastic reactions exhibited fluctuations that were an order
of magnitude beyond the predictions of diffusion theories. Among these are the reactions
Xe(1420 MeV) + Bi and Mo(1680 MeV) + Mo, see table 5.2. Also figs. 5.2b, ¢, d visualize the
discrepancies between the observed variances and the values calculated with diffusion theory even if the
drift to mass symmetry is disregarded.

The reason for the mass fluctuations being too small is discussed at length in [5.23]. The arguments
developed there can be summarized as follows: if two nascent fragments are bridged by a thin neck, it
costs much binding energy to create an asymmetric configuration. Thermal or quantal fluctuations
cannot spread against this confinement. What actually happens is described in section 3.3: asymmetry is
generated when the neck is still thick and the shift of the dent takes essentially no energy; later on,
when the potential energy would like to restore symmetry, it is blocked by inertia. This latter fact
establishes the invariability of the average mass, as discussed in the previous section.

For the theoretical TKEs presented in the tables 5.1 and 5.2, the experimental o, were used. Hence
agreement between measured and theoretical variances cannot be celebrated as a success. Nevertheless
it must be stressed that random neck rupture can account for the largest variances ever measured, see the
o’ of thze Mo + Mo reaction in table 5.2. In fact, the largest variance random neck rupture can give is
about A_ /12.

5.5. Narrow mass distributions imply high TKE and vice versa

One of the significant correlations which random neck rupture gives is that large total kinetic
energies TKE must come with small mass variances ai. This anticorrelation was already announced in
item (i) of section 3.1 and is made comprehensible by figs. 3.1a, b. Ample evidence exists for it.

For example, consider the two outliers in the total kinetic energy systematics (see fig. 5.1). One of
them sits at Z2 /AL"> =1571 and belongs to ***Fm(sf). The other at Z> /A!}> =3603 stems from the
deep-inelastic collision ***Pb(1575 MeV) + **Pb and deviates not that much from the full line. When
these reactions with their unusually high TKEs are looked up in the tables 5.1 and 5.2, one finds for
them unusually small values of 0. Reactions for comparison are **>Cf(sf) and ***U(1766 MeV) + ***U.

Even more striking are recent data on the heaviest actinides shown in fig. 5.3. These nuclei fission
through two different fission channels, as will be discussed in detail in sections 7.2 and 8.3. What only
matters here is that the relative yields change abruptly. For example, spontaneous fission of **’Md
preferentially produces fragments with low TKE, and the corresponding mass distribution is broad.
*“Md, on the other hand, is rather active at high TKE, and thus the mass distribution is narrow.

All the data presented by Hulet and co-workers [1.11] exhibits the same anticorrelation. Similar
evidence can be found in sections 7.2 and 8.4, where the meaning of the superlong fission channels and
of the standard I/1I splitting will be discussed. At present no exception from the rule expressed by the
title of this section is known.

Narrow mass distributions indicate a short neck. Random neck rupture cannot clarify why short
necks are formed in just >*Fm(sf) and ***Pb(1575 MeV) + ***Pb. This is the aim of the fission channel
calculations to be discussed in the chs. 7, 8 and 9. Anticipating these, we remark here that the short
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Fig. 5.3. Mass distributions (right-hand side) and total kinetic energy distributions (left-hand side) from the spontaneous fission of **Md (lower
parts) and **°Md (upper parts). The histograms display the experimental results by Hulet et al. [1.11]. Also the normalization was taken from the
experimental work, namely in terms of fission events collected in 5 MeV bins for TKE and in four-nucleon bins for mass number A. The dotted lines
are predictions of random neck rupture and multichannel-fission calculations, which will be discussed in more detail in chs. 7 to 9. Only those
components are shown that are dominant in the respective fissioning system. In ***Md this is the “standard” channel with low kinetic energy and a

broad, slightly asymmetrical mass distribution. The “supershort” channel prevails in *’Md with a high average kinetic energy and a narrow mass
distribution. The superposition of both components would accurately reproduce the experimental results.

necks have something to do with the closed shells near Z=50, N=82 and Z=82, N=126,
respectively, that arise in the stretched compound nucleus prior to scission.

5.6. The slopes of neutron multiplicities

There are three large sets of scission data, namely total kinetic energies, mass yields and neutron
multiplicities. In the previous sections we examined the correlations that random neck rupture
establishes between the first two sets. Now we shall report what experiments tell us about the interplay
between the mass yields and the neutron multiplicities.

According to random neck rupture, neutron multiplicities contain information on the variability of
the rupture position and hence on the shift instability. In stating this it is assumed that neutron
multiplicities reflect the excitation energies of the fragments as described in the most primitive way by
eq. (4.19). Excitation energies, on the other hand, depend on the deformations of the newborn
fragments as expressed by eq. (4.15). The first term on the right-hand side of (4.15), E,.(A), which is
caused by a non-equilibrium process, generates a much steeper dependence on the mass number A than
the second term EA/A_,, which is due to statistical equilibrium. This is a prediction that can be
checked by experiments.

Figure 5.4 displays such a check. In these data, the experimentalists themselves replaced the neutron
multiplicities by excitation energies. One can see that only random neck rupture explains the enormous
slopes of E*(A). For more experiments, comparison is summarized in table 5.3.

Data as shown in fig. 5.4 were criticized by other experimentalists as not being reliable. Namely,
those data were taken from the kinematics of the fragments; no neutrons were registered. Direct
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Fig. 5.4. Excitation energy E* as a function of the fragment mass number A from fission of *“At [3.12]. The dots are the experimental data

obtained by Plasil and his colleagues [5.24]. The full line depicts what random neck rupture gives. The dash-dotted line is according to statistical
equilibrium, and the dashed one stems froms Nix’s dynamical model [2.3].

Table 5.3
Slopes d»/dA for several fissioning systems. In these systems, the neutron multiplicities »(A)
look like straight lines, at least in a broad neighborhood of mass symmetry, so that the
specification of a uniform slope makes sense. The results are given according to statistical
equilibrium, that is that the excitation energy is shared by the fragments in proportion to their
mass numbers, according to the dynamical model [2.3), according to random neck rupture, and
according to meaasurements. The last column contains references to the experimental works.
The measurements with astatine and actinium were similar but not identical, the main
difference being that the first measurements, respectively, were done using the kinematical
method, while the second ones were performed by direct neutron counting

Nucleus  Equilibrium Dynamical model ~ Rupture  Experiment References
*®po 0.02 0.02 0.06 0.06 [5.25]
AL 0.02 0.02 0.08 0.09 {5.24]

0.02 0.02 0.08 0.04 [5.26]
Ac 0.01 0.02 0.09 0.09 [5.27]

0.01 0.02 0.08 0.05 [5.26]

measurements of the neutrons gave smaller slopes, but slopes still too large to be explained by thermal
equilibrium, see table 5.3 for documentation. The last point is comforting for a disciple of random neck
rupture.

Both experimental methods have disadvantages: the kinematical method derives a small quantity
(the number of evaporated nucleons) from the difference of two large numbers (the mass numbers of a
fragment prior to and after evaporation). The direct measurements must take the relation between
neutron multiplicity and fragment mass from the angular distribution of the neutrons by deconvolution.
A differential method usually steepens dependences while a deconvolution smoothens them out. One
might therefore assume that the truth is enclosed by the two methods from above and below.

At the end of section 5.5 we already mentioned that the results derived from random neck rupture
do not depend on the way in which a particular neck is created. Hence random neck rupture should also
be applicable to deep-inelastic collisions and fusion-fission in heavy-ion reactions. In these reactions,
the equilibrium term of (4.15) is much more important, since E? is larger than in low-energy fission.
Nevertheless, observable rises of the slopes dv/dA should still exist. For this there is evidence by
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Benton et al. [5.28], see fig. 5.5b, but against this evaluation objections were raised [5.29]. Moreover,
recent work by Hinde [5.30] and Rossner [5.6] and their co-workers indicates that neutron-multiplicity
slopes should be as small as predicted by statistical equilibrium. Comprehensive studies are necessary.

5.7. The sawtooth of neutron multiplicity

According to random neck rupture, a double-humped mass yield Y(A) is inevitably connected with a
sawtooth-shaped neutron multiplicity »(A). This is a very specific relation, and therefore it was already
stressed in item (ii) of section 3.1. A violation would either indicate evaporation of charged particles or
gamma rays, or invalidate random neck rupture.

The way in which random neck rupture explains this effect is illustrated in fig. 3.2. One can see that
the data are reproduced by the theory with an accuracy of about 1 neutron. Further verifications of this
kind can be found in fig. 7.4. So one may claim that in nuclear fission no contradiction to random neck
rupture seems to exist.

The double-humped mass distribution reflects an asymmetrical prescission shape. In nuclear fission
such a shape is due to the quantal effects. In deep-inelastic collisions the prescission shape preserves the
initial asymmetry because of the geometry of the neck, see section 5.3. All that is essential for the yield
Y(A) and the multiplicity »(A) is the mere existence of an asymmetrical prescission shape. Hence also
in deep-inelastic collisions a neutron sawtooth should be observable if target and projectile have
different mass numbers. This was predicted in [3.14]. Meanwhile two verifications can be presented, see
fig. 5.5. More recent data measured by Hinde et al. [5.30] were interpreted as a refutation of that
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Fig. 5.5. The share of excitation energy that a fragment with mass number A receives when produced in a deep-inelastic reaction. In part (a), the
share is expressed by the neutron multiplicity as a function of the fragment’s charge number Z. Consult eqs. (4.19) and (5.7) to have these
quantities converted into excitation energy and mass number. The measurements were done by Hilscher and co-workers [5.31], and the
random-neck-rupture calculation by us [3.1]. Part (b) actually displays the above-mentioned share, but only that piece of the sawtooth shape was
measured that is associated with the light fragments [5.28]. The thick line is again the result from random neck rupture while the dash-dotted line
represents what one should see if statistical equilibrium prevailed. Note that, according to the data, only 30% of the nucleons get almost 50% of the
excitation energy.
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prediction, but this is debatable since these data seem to stem from fusion—fission processes (with a
symmetrical prescission shape) and to contain very few deep-inelastic events (from an asymmetrical
prescission shape).

The scission-point model also succeeded with the sawtooth curve of neutron multiplicity. See fig. 9 in
ref. [1.14], where the deformations of the nascent fragments are related to a multiplicity curve. Kluge
and Lajtai [5.32] even reached appealing quantitative agreement with uranium, plutonium and
californium data. But all these calculations are based on statistical equilibrium. It therefore seems
impossible that they can cope with the slopes presented in table 5.3.

6. Fluctuations in the elongation
6.1. A difficulty with the TKE distributions

In nuclear fission, fluctuations of the total kinetic energy are almost as impressive as those of the
mass of the fragments. TKE fluctuations can be caused either by varying semilength / of the prescission
shape or by changes in the prescission kinetic energy K_. Furthermore, it is not obvious if these
fluctuations are generated, say, on the saddle and are only propagated to scission or if they are built up
all along fission by stochastic interactions. That such questions can be tackled by a Langevin equation
or, equivalently, by the corresponding Fokker-Planck equation, has been exploited more than once
[6.1-6.11].

Moreover, Fokker—Planck equations have also been used to compute the mass distribution of fission.
Such approaches are not principally in contradiction to the ideas presented in the previous three
chapters. Namely, when a criticism is raised against a certain statistical theory then it is rarely against
the use of a Fokker~Planck equation but rather against the underlying physical picture that is modelled
by the particular Fokker-Planck equation. A successful application of a Fokker—Planck equation to
nuclear fission in a spirit similar to that described in ch. 3 was published by Adeev and Gonchar [6.12].
They mimicked the capillarity instability by stopping their calculations when the nucleus had reached its
prescission shape and evaluated the observables from the prescission shape.

Fokker—Planck equations also seem well suited if mass and TKE fluctuations are to be studied in a
unified way [6.10]. So this kind of theory is probably ideal to cope with all these complexities.

However, TKE fluctuations pose an especially tough problem. The problem is connected with the
long-known dissymmetry or skewness of the TKE distributions, which is zero in most treatments but
sizeable in nature.

The underlying difficuity is much more serious than the appearance of an unwanted third moment.
Namely, a recent analysis [6.13] of the experimental data with very good statistics showed that the TKE
distributions Y(TKE) for fixed mass number A are well described by

(200 )2 <—(L—lmax)2>
Y(TKE) = (TKE h exp @71, ) (6.1)
On the right-hand side
22(Z. —Z
- 60 ( cn ) (62)

TKE



U. Brosa et al., Nuclear scission 203

is a replacement for TKE. If one drops all sophisticated details such as fragment deformation and
nuclear interaction, one may interpret L as the semilength of the prescission shape; compare (6.2) with
eqs. (4.10) and (4.14). The fit parameters

h,l (6.3)

min? “max? “dec
have intuitive meanings. 4 approximates the height of the distribution because 200 MeV is about the
average TKE of the fission of the actinides (see the factor (200/TKE)” in front of the right-hand side).
The distribution is zero for all L smaller than /_, . [, hence denotes the smallest semilength possible.
l .. is the length for which the exponential is largest and [, . gives the scale for the decrease with
increasing L. One of the excellent fits that were made possible by the function (6.1) can be admired in
fig. 6.1. Similar agreement was reached for the neutron-induced fission of uranium “°U(n, f) whenever
there were enough counts and no dominant superposition from different fission channels. So there is
not much doubt that (6.1) is the representation of the TKE distributions.

Alarming in (6.1) is the odd behavior at large and small TKE, which are outside the reach of all
currently available Fokker—Planck theories.

It is therefore clear that the standard approaches miss an essential point in the mechanism generating
the TKE distributions. Nevertheless, just for calibration it is useful to have some simple formulas in
order to estimate what the conventional theory of stochastic processes would predict. These simple
formulas will be derived in the next sections.

6.2. Exposition: the Langevin process of stretching

In section 4.4 we learned to obtain the total kinetic energy TKE(A). Its average over A, TKE
without argument, contains almost the same information as the function TKE(A) since the dependence

105 ; T T T
A=100

Y/counts
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10° 3
10° 3

10! 1

10° %H‘—l—l———&—*a«
20 160 200
Fig. 6.1. Typical distribution of total kinetic energy Y(TKE) if the mass of a fragment is fixed (A = 100 in the present case). The data, displayed by
asterisks, were taken from the spontaneous fission of **?Cf [6.14]. The yield is not normalized but given directly by counts to make the quality of the
statistics explicit. The line drawn is the best fit based on the function (6.1). It fits perfectly over four orders of magnitude. The dashed line shows the
best adaption of the Gaussian & exp{-0.5[(TKE - TKE)/o;]’} with h, TKE and oy, as adjustable parameters. Discrepancies show up when more’

than one order of magnitude is to be represented. For later reference we declare here that the mass number A = 100 was chosen because it is nearly
a sheer product of the so-called standard II fission channel. ’
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on A is generated by the trivial factor Z(Z,, — Z) in the Coulomb repulsion energy. This is why we
could assign a single semilength to each prescission shape. Nevertheless, the semilength of the
prescission shape must fluctuate due to the coupling with the microscopic degrees of freedom.
Consequently the total kinetic energy fluctuates even if only a certain fragmentation with fixed mass
number A is considered. The goal now is to calculate the variance o of the total kinetic energy.

Let us keep only the semilength / as the essential degree of freedom. Thus we restrict ourselves to a
single equation of motion

mi(t) = —m¢gi(t) + F + mR(t) , (6.4)

the standard Langevin equation. To specify the quantities in this equation, we develop the following
physical picture [6.11]:

(i) The inertial parameter m, being identical to m,, in (3.1), is taken as a constant. Its value is the
reduced mass

m=m, A.l4 (6.5)

of the relative fragment motion. m_,_ represents the mass of a nucleon.

(ii) The constant damping ¢ describes the energy transfer to microscopic as well as to other collective
degrees of freedom. We shall see that only the product ¢, matters, where ¢, denotes the time that the
nucleus spends on its way from the last barrier to scission. The product ¢, can be obtained from the
fraction K /AU, see (vi) below.

(iii) The force F is also taken to be constant. We obtain it from calculated values of the potential
energy by

F=AU/AI. (6.6)

Al gives the increase of semilength between the last barrier and scission. AU is, up to a sign, the
potential energy that is freed on descent. For it, the following formula applies:

E,.tE, ifE, <B,

AU= {E:es + B otherwise , (6.7)
with E,, being the difference of potential energy between the prescission shape and the ground state. B
denotes the height of the barrier and the input energy E, is fixed by experimental conditions. Formula
(6.7) has to be complicated since it must cope with low-energy fission, see section 8.2, and deep-
inelastic collisions, see section 6.4. In spontaneous fission, for example, E,  is zero, and then it is clear
that the nucleus cannot gain more energy than AU = E,... In heavy-ion collisions E;  is essentially
identical with the energy loss E, ., usually a large amount of energy. Nevertheless, AU can never
become bigger than E,  + B.

(iv) The random Langevin force R(¢) has zero mean, is §-correlated in time and of constant strength
D:

(R()) =0, (6.8)

(RIOR(t)) =Dé(t—1"), (6.9)
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wherein the diffusivity D is related to the damping & and the temperature T through Einstein’s relation
D=2T¢/m . (6.10)

This means that the nucleus is permanently subjected to random forces. The origin of these forces is
supposed to be thermal; specific quantum fluctuations are neglected because tunneling is not con-
sidered.

(v) The temperature T is related to the excitation energy E* by the familiar formula

T/MeV=[8(E*/MeV)A_']"?. (6.11)

(vi) In reality, the excitation energy increases from saddle to scission. We take its value E* at
scission and fix it according to the following recipe: the gain in energy due to the descent from the last
barrier is partly transformed to kinetic energy

K. =¢(x)AU, (6.12)
partly dissipated

. [o(x) AU if E, <B
Ei= { é(x)AU +E, ~ B otherwise . (6.13)

The first contributions on the right-hand sides represent the excitation caused by friction on the way
from barrier to scission. Only a fraction of AU is transformed to excitation. ¢(x) allots this share. For
the moment we just have to know that ¢(x) takes only two values

3 .
3 if A, <250
¢() = { 1 otherwise . (6.14)

The function ¢(x) will be defined in (6.25), and the assignment (6.14) is related to the odd-even effects
in fission [6.15, 6.16]. The contribution E, , — B in (6.13) is the residual excitation inherited from the
compound state.

All the remainder of AU, which is not absorbed by K, or E*, has to go into collective degrees of
freedom other than elongation.

One can develop the subsequent theory from the Langevin eq. (6.4) alone, and this is what we shall
do. Just for reference we give the corresponding Fokker—Planck equation

3,0, v,0)=[-v3,—3,(—€v + Fim) + (D/2)3’]p(l, v, ) . (6.15)
Semilength ! and velocity v (=) are the independent variables, and p(/, v, t) symbolizes the probability
density one is seeking when one works with the Fokker—Planck equation, see the textbooks [6.17-6.19]

or more specialized for applications in nuclear physics [6.20, 6.21] and, for the problem at hand, [6.11].

6.3. Solution: formulas for the TKE variances

The plan is first to extract the average dynamics from (6.4). The resulting formulas will enable us to
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eliminate the vaguely known scission time ¢, in favor of the scission length I(t = t). With this we can

process the variances.
Write the Langevin eq. (6.4) as a first-order system:

<£)=_A<i>+(F/m2R(t))’ (6.16)
with the damping matrix
A= (8 _gl) (6.17)

as an abbreviation. The elementary theory of ordinary differential equations gives the solution of (6.16)
as

(o)) =< (o) +] & “Lim + R ) 8- 19

0

Averaging makes the Langevin force R disappear, cf. eq. (6.8). With

e =1-4 f_;gt, (6.19)
you can solve the integrals in (6.18). The mean values come out as
F F\l-e™
(U0) = () + 1+ (000 = or5) =5 (6.20)
and
(00) = (0(0)) = ({200} )1 -7, (621)

What we look for is the status at scission, hence ¢ =¢_. Then we see, it is only the length difference
Al:= (I(1,)) — (I(0)) between the last barrier and the scission point which plays a role. In addition, at
least in fission, the velocities must be small on top of the barrier. Therefore, we put (v(0)) = 0. Hence
a condensed version of the eqs. (6.20) and (6.21) is

Al=—r;l%(x—l+e_x), vs=r—gg(l—e”"), (6.22)

with v, := (v(t,)) and
xi=§t,. (6.23)

The first equation in (6.22) shows indeed that one may eliminate the scission time ¢ by the length of the
descent Al
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However, one can go one step further. The prescission kinetic energy must be of the order

Ks ~ %mvz (6.24)

Putting (6.22) with (6.6) into this leads to

1 (1-e)

KJAU= (), (x)i=3 ~—zts

(6.25)

In words: the fraction K /AU of potential energy that turns into kinetic energy fixes the friction
parameter x and vice versa. The impellent for the assumption (vi) in the previous section should now be
clear.

For the computation of the TKE variance we need the covariance matrix

I;I { [;v t
=3 59).

with the elements
L(r):= {0 = U0))*)
L,(8) = () = L)) = (v(1)))) » (6.27)
L, ()= {(v(®) = (v(®))*) -

To find them, one has to subtract from (6.18) the mean value (this removes the term with the constant
force F), to square the expression, and to take averages. The term with the square of the Langevin
force does not drop out so that (6.9) must be applied. One obtains

t

I =e ") e " + f e De " dr. (6.28)

0

For shorthand the diffusion matrix

0= 3 o

was defined. The superscript T denotes the transpose of the matrix.

Equation (6.28) allows a quantitative discussion of a question that was raised at the outset of this
chapter, namely on the origin of the observed fluctuations. The first contribution on the right-hand side
is the covariance due to the fluctuations at the beginning of the process, also called the homogeneous
part I'™" The second contribution, the inhomogeneous part I''"™, reflects the influence of the
permanent random interactions.

Because of (6.19), evaluation of (6.28) is easy. We do not give here the homogeneous part since it is
less important. Namely, I'"®™ becomes constant for large times while I'"™ increases. We made an a
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posteriori estimate and found that less than 5% of the total variance can come from the homogeneous
part.
The inhomogeneous part is evaluated as

rin,) = % 2r—(1-e™)G-e™)],

rite)= mlg (1-e), (630

th(t)_ ( —Zx).
Einstein’s relation (6.10) was used to eliminate the diffusivity.

We have TKE=V_ () +V,, + K,(v,) in analogy to (4.14). This allows us to find the ultimately
searched for variances of the total kinetic energy as

o= [(F) ne+ (5 o+ B (G ] 631

The derivatives are according to (4.10) and (6.24)

dV ou _V ou dKS
S —em - Sh oy (6.32)

The remainder of the work is only insertion: put (6.30) and (6.32) into (6.31), use (6.22) to replace v,
and ¢, and eliminate F with (6.6). Finally, one arrives at

02E = 0'2)0 + (rzEyv — 20'2’," (6.33)
with
Al (2T \'"? 2x—(1-e )3 -e")\'?

(1- e‘x)3(1 + e~x))l/2

0= (TAUY 0, w00= (S (6.34)
Al 2 1—e ") \!72
0n= (Ve 1) w0, wai=(55)

For brevity we wrote here [:=I(t,). o,  and o, were the standard deviations of TKE if the
fluctuations of length and velocity would exclude each other. The mixed term oy, embodies the
correlation between length and velocity fluctuations. Note that these correlations diminish the total
variance. The reason is the decrease of the Coulomb repulsion for increasing scission length.

The non-dimensional functions ¢, ¢, and ¢, are shown in fig. 6.2. You might wish to use this figure
for quick estimates.
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Fig. 6.2. The universal functions ¢(x), ¥,,(x), ¥,(x) and ¢(x) [see eqs. (6.25) and (6.34)] as they depend on the friction parameter x [see eq.
(6.23)). For values of x larger than ten the asymptotics noted at the curves can be taken.

6.4. Some worked examples

We shall give a few examples for the application of eq. (6.33) to heavy-ion reactions. These are the
simplest cases as shell effects do not play a role. Applications to low-energy fission will be presented in
section 8.2.

The cases to be considered are listed in table 6.1. In these reactions it is not clear if deep-inelastic
collisions or fusion—fission reactions prevail. For the reactions with uranium, the mass number of the

Table 6.1
TKE standard deviations o, theoretical (t) and experimental (e) for some heavy-ion reactions. This table contains all quantities
necessary for the computations explained in section 6.4. Reference to the experimentalists’ papers can be found in the last column

Reaction Er(MeV) V., (MeV) AU (MeV) Al (fm) I(fm) o, (MeV) o5 (MeV)  References

PU+*ca 100 270 74 11.2 192 26 27 [6.22,6.23]
200 31 35

2y 4190 100 24 38 7.0 183 20 2 [6.22,6.23]

Mo +*Mo 300 173 12 5.0 16.9 28 k?) [6.24]
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compound system is between 230 and 300. That this is a problematic domain, was discussed in section
5.3. Although lack of discrimination frustrates the computation of mass yields, it does not defeat our
access to TKE fluctuations.

Determine first from eq. (6.14) the friction parameter x [defined in (6.23)]. Namely, for the systems
with uranium, (6.14) demands ¢(x) = 0.25. With the graph of this function in fig. 6.2 we find x =2.7.
The values of the universal functions can also be read from fig. 6.2: y,(x) =0.87, ¢, (x) =0.71 and
¥, (x) =0.68. For the system with molybdenum, (6.14) postulates ¢(x) =0.375 so that x =1.7 and so
forth.

Next the prefactors in (6.34) have to be found. The temperature T follows, according to eq. (6.11),
from the excitation energy E? and the mass number A_ of the stretching complex. In heavy-ion
reactions, everything on the right-hand side of (6.13) is small compared to E;, and the input energy is
about the same as the energy loss E,  so that E,_ becomes virtually identical with E*. E,__, however,

0ss loss joss?
is an observable that varies widely in heavy-ion reactions, see the reaction **U+ “*Ca in table
6.1.

The length [ at scission may be estimated from (5.1). More accurate values can be obtained if the
mass distribution is available, see section 3.1 for the idea and chapter 4 for the detailed prescriptions.
Likewise, a first estimate for the Coulomb repulsion V., can be taken from the Coulomb term in the
systematics (5.5), 0.14Z> /Al®, and a better value can be found by the methods of chapter 4.
~ The other numbers required in the prefactors (AU, Al and [) are characteristics of the potential
energy. For applications in heavy-ion reactions, where quantal shell effects are negligible, a liquid-drop
code may be sufficient. You must determine the potential energy at the barrier, its location and the
potential energy at scission.

One general trait of these quantities can be observed in table 6.1: with decreasing total mass number
A, or, equivalently, decreasing fissility (4.17), the length difference A/ and even more the energy
difference AU decrease sharply. This is the well known confluence of barrier and onset of Rayleigh
instability at small fissilities [3.8].

We have entered some of our results into table 6.1. The agreement between calculated values o, and
measured ones o, is impressive. Of course, the agreement relies on the assumption (vi) in section 6.2,
in particular on (6.14). On the other hand, one can say that the simple formulas derived in this chapter
establish a comprehensible relation between energy dissipation in nuclear scission and the width of the
distribution of the total kinetic energy.

Another point on the physics must still be made. It was claimed in section 4.4 that the prescission
kinetic energy should be small, K, <10 MeV. Evidence for this was presented in section 5.2. Despite
this smallness it turned out (see the examples above) that the fluctuations of K, are not negligible. On
the contrary, they are of the same size as K| itself. This means that a small percentage of all nuclei
scission, as far as elongation is concerned, in a state of almost perfect rest. Other degrees of freedom
may be quite active.

Summarizing: we now have a handy tool to estimate the fluctuations in total kinetic energy. The
system characteristics are taken care of by very simple formulas, namely by (6.34). That these formulas
are good enough for a first orientation, was checked by the examples in table 6.1, and more examples
will be given in section 8.2. Neither this simple nor any other theory available at present can explain the
odd asymptotic behavior of the TKE distribution for large and small total kinetic energies as
represented by formula (6.1). Substantial improvements are therefore necessary. However, it is a
recent insight that fluctuations in fission grow during a non-equilibrium evolution [6.1-6.12]. We think
that this insight, being the central point of the work presented, will stay valid.
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7. The systematics of low-energy fission
7.1. Standard, superlong and supershort

Chapter 3 started with an assertion: the most important exit-channel observables are slaves of the
prescission shape. A closer look on the data reveals that this might not strictly be true. For example, a
single prescission shape produces an average of the total kinetic energy TKE(A) with a smooth
maximum at mass symmetry A = A_ /2 even if this prescission shape is asymmetrical. Sizeable dips at
symmetry, as observed in the fission of uranium, or peaks, as measured for fermium (have a look at fig.
7.3 if you have forgotten these results) seem to be incompatible with the slaving assertion.

The dilemma immediately disappears if one admits that several prescission shapes can be formed.
Then the nearly equal fragments come from a prescission shape other than the unequal ones. The
additional prescission shape must be symmetric (otherwise it would not predominantly produce almost
equal fragments) and it must be longer than the usual prescission shape if a dip in TKE(A) is to appear.
In contrast, the additional prescission shape must be shorter if a peak in TKE(A) shows up [3.2].

Nevertheless the original theory with only one prescission shape was not completely wrong: most
fission is fission of uranium, thorium and californium, and these nuclei produce mostly fragments with
some asymmetry and total kinetic energy according to the TKE systematics (5.4). The events at
symmetry are rare. One prescission shape, henceforth denoted as the standard, is sufficient to cope with
more than 95% of all the fission events.

For more precision we need at least three prescission shapes: standard, superlong and supershort.
Standard is slightly asymmetric and of “normal” length, as shown in fig. 3.2, while superlong and
supershort are both almost symmetrical and appreciably longer or shorter than standard.

These differences, being differences in mean length, are usually somewhat larger than those caused
by the fluctuations that were discussed in chapter 6. Hence we expect separable components in the
exit-channel observables although overlap may occur. We shall notice this in the figs. 7.6, 7.7, 8.3, 8.4,
8.6 and 8.7.

Therefore, mere inspection of measurements induces one to consider several prescission shapes.
However, one can also derive the standard, superlong and supershort prescission shapes from theory.
They become apparent when single-particle quantum shells are considered as will be detailed in ch. 9.
Shell effects dig ditches in potential energy surfaces as shown in fig. 3.3, so that the nucleus is driven to
the standard, superlong and supershort prescission shapes. Hence there are not only three isolated
shapes, there are channels leading to these prescission shapes, also called standard, superlong and so
forth.

The channels traverse the space of the deformations. As coordinates in this space we may take the
degrees of freedom introduced in ch. 2. The simplest set is (2.14) with semilength /, neck radius r and
location z of the dent. Even this requires a three-dimensional space. Since a sheet of paper provides
only two dimensions, we must resort to projections onto three planes. In fig. 7.1 these are shown: (/, r)
top right, (r, z) top left and (z, /) bottom left.

Consider, for example, the (/, r) projection, top right. The standard channel is distinguished by the
full line. It is rooted in the ground state gs. To initiate fission, the nucleus lengthens (/ increases), and
its radius  decreases. Shortly after the point denoted by 2nd min it becomes energetically favorable to
shorten somewhat, while the radius continues to decrease. We call this rebound “the big loop”. After
the big loop everything proceeds as expected: the nucleus stretches and thins its neck until, just behind
the prescission shape at +, two fragments appear.
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Fig. 7.1. Channel graph of **Cf. The figure is explained in the text. It was shown first in [3.15]. The poor accuracy of the barriers is caused by the

use of the surface parametrization (2.14). Better values can be found in tables 8.2-8.4. Channel graphs of **U and ***Fm were published in {5.9},
{7.1], better ones in [7.2]. A channel graph of **Th appeared in [8.10].

To each point on the line there belongs a shape. Some shapes representative for the standard
channel in californium are shown in fig. 7.2a, c.

What you see in fig. 7.2c are asymmetrical shapes. But one cannot identify asymmetry in the (/, r)
projection of fig. 7.1. For this one must consult the (r, z) projection, top left. The full line depicts the
same sequence of shapes as the full line in the (/, ) projection, namely the standard channel. We see
that the ground state is nearly symmetric, and that, apart from minor deviations, the nucleus stays
symmetric until the big loop is reached. Then asymmetry becomes sizeable, z~2.5, but during
approach to scission asymmetry decreases again.

Let us return to the top-right part of fig. 7.1: there are other lines, dashed and dotted ones. They
represent other channels, namely superlong and supershort, which branch from the standard channel at
the bifurcation points, marked by full circles. All channels finish at various prescission shapes, indicated
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Fig. 7.2. Visualization of the fission channels shown in fig. 7.1 by sequences of shapes. Part (a) depicts the evolution from the ground state to the
second minimum. Part (b) illustrates deformation in the supershort fission channel, starting from the bifurcation and ending at prescission (+ in fig.
7.1). Part (c) shows a similar change along the standard channel, but the first outline in the series displays the shape of largest asymmetry. Finally
part (d) is like part (b) but is for the superlong case. The formulas relating these shapes with the coordinates (/, r, z) are (2.3), (2.9, 2.10) and
(2.15). The figure is taken from [3.15].

by pluses. In principle, the trails of the supershort and superlong channels can also be seen in the other
projections (r, z) and (z, /). But since these channels deviate little from symmetry, z = 0, their lines
almost coincide with the axes, so that only some bulges appear. Pictures of typical shapes on supershort
and superlong channels can be found in fig. 7.2b, d.

The fourth part of fig. 7.1, right bottom, shows the potential energy contained in the nucleus as it
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floats through one of the channels. For example, the nucleus starts at the ground state gs with energy 0
(so is the normalization), climbs the first barrier at /=~ 10 fm, falls into the second minimum 2nd min
and rises to the second barrier at /=12 fm, after which it descends to scission. The full line describes
this travel for the standard channel. The other lines do the same for the other fission channels.

The double-humped barrier and the second minimum in the standard channel have been known since
1972 [1.2] or even since 1964 [1.1], but the system of barriers related to the new fission channels is new.
Thus the superlong channel has its own barrier at /=~ 14 fm that is higher than any of the standard
barriers, and the same is true for the supershort channel at /=12 fm.

What are diagrams like fig. 7.1 useful for? First, we can take from them the semilengths / and
asymmetries z of the various prescission shapes. With these data we can enter section 4.2, construct the
prescission shapes with flat necks, and find, according to sections 4.3 to 4.5, for each prescission shape
the yield Y(A) and the other exit-channel variables; see section 9.3 for details. Superposition of the
various contributions then gives what should be compared with experiments. However, what is the
weight for each contribution? This can be inferred from the barriers shown in fig. 7.1. The highest
barrier of the standard channel is lower than the highest barrier of the superlong or supershor:
channels. Hence we conclude that the standard channel is much more used than the superlong channel,
and this is in fact what is observed. However, we must point out that our barrier heights and widths are
not good enough for quantitative comparison. However, qualitatively the barrier criterion agrees well
with the observations, see section 8.3. Moreover, experimental data can be analyzed so that the weights
are climinated, and the numbers thus extracted, for example, the mean fragment masses, can be
compared with the computed ones, see section 7.2, in particular table 7.1.

We stress the role of the bifurcation points. They divide the flux to the various prescission shapes,
and hence they decide, in cooperation with the barriers, the distribution of the exit-channel observ-
ables. The system of bifurcation points, the system of barriers and the system of prescission shapes are
the new items of low-energy fission theory. “Low energy” since they are manifestations of quantal
shells, which are smeared out when excitation increases.

Without consideration of at least three degrees of freedom, [, r and z, there are but little prospects to
predict anything relevant for experiments. We need r to see when the fragments appear, we need [ for
the average total kinetic energy and we need z to compute the average mass of the fragments.
Moreover, as fig. 7.1 clearly shows, it is even impossible to disentangle the various fission channels in a
two-dimensional space. For the quantitative comparisons to be presented in the next sections even five
degrees of freedom, as introduced in eq. (2.1), were employed.

7.2. Evidence for superlong, standard and supershort

Figures 7.3 and 7.4 give surveys of the most important exit-channel observables as they vary with the
compound-nucleus mass number A_,. In fig. 7.3 the yield Y(A) and the total kinetic energy TKE(A)
are plotted as functions of the fragment mass number A. In fig. 7.4 the neutron multiplicities »(A) are
shown.

Let us start with a discussion of the experimental data, indicated in these figures by dots. The yield
from the fission of astatine (A_, =213) is displayed in fig. 7.3 and is almost exactly what is called
liquid-drop fission: one broad hump centered at mass symmetry A = 3 A_,. The reason for liquid-drop
fission is a high barrier that is overcome only when enough excitation energy is pumped into the system.
This, on the other hand, destroys the quantum shells. Only recently {7.3} small shoulders at A =~ 140
and, of course, at the complement A ~ 73 were discovered. This means that some shell effects are still
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Table 7.1
Comparison of calculated (t) and measured (e) values of total kinetic energy TKE, average mass A, of the heavy
fragment and the standard deviations o, of the mass distribution for various fission channels and various nuclei. The
total neutron multiplicities #' still do not have experimental counterparts, but there is evidence from some measurements
that they cannot be completely wrong: see fig. 7 in [5.27] for *’Ac and fig. 6 in [7.13] for the actinides with A, = 260.
The reactions by which the nuclei were fissioned can be looked up in the references quoted in the last column. Of course,
the special features of these reactions such as their excitation energies were taken into account when the calculations
were done. Typical theoretical errors are 5 MeV for the TKE, three nucleons for the A, and 25% for the o,. The only
serious deviations between theory and experiment are thus o, for the superlong channel in **°U and the superasymmetric
channel in ***Cf. But while the former obviously rests on a problem with the evaluation (see the caption of fig. 7.6), it is
theoretical failure that we cannot cope with the superasymmetric channel. Two fermium isotopes were included to
demonstrate that none of the observables displayed in this table changes much when only one nucleon is added. Hence
there is no risk in taking the characteristics of nuclei such as **U, ***Pu and ***Md from this table. Important companion
tables are 8.5, which contains the theoretical raw data needed for this presentation, and table 8.6 with comparisons
between computed and measured TKE variances o5

Nucleus  Channel TKE' (MeV) TKE® (MeV) Ay, A%, d, oS '  References
2BAL standard 153 147 133 137 54 39 23 [14,75)
superlong 148 146 108 107 7.6 89 49
Ac standard 170 164 134 130 56 60 34 [527,1.10]
superlong 158 153 114 114 87 95 54
Th standard I 176 168 135 135 41 36 25 [7.6]
standard 11 168 158 139 143 57 43 31
superlong 155 153 116 116 9.2 5.7
2y standard I 186 187 135 134 34 26 20 [L§]
standard 11 176 167 141 141 59 50 29
superiong 150 157 118 118 129 41 73
#py standard I 192 192 136 134 39 28 20 [7.7,7.8
standard I 184 175 141 140 55 57 28
superlong 156 120 12.2 7.3
¢t supershort 226 126 1.8 0.1 [6.13]
standard I 205 200 137 135 46 32 25
standard 11 194 188 147 143 61 50 35
standard 111 176 149 7.1
superasymm. 179 146 161 178 70 23 36
superlong 173 180 128 127 132 116 65
*Es supershort 226 131 3.1 1.1 [5.8]
standard 203 143 6.3 32
*Fm supershort 230 230 132 130 31 1.1 [79,1.11)
standard 207 205 145 6.2 3.0
*Fm supershort 231 235 130 130 2.6 12 [7.10]
standard 204 200 145 6.3 3.5
“108]  supershort 245 139 6.5 37 [1.16]
standard 194 155 19.2 77

alive when *"°At fissions. However, observation of such shoulders becomes increasingly difficult when
A, decreases so that we may loosely say that At is the lightest nucleus that fissions under the rule of
quantal effects. When we go to examine the yield of actinium, we find that both components, that at
symmetry and that at A ~ 140, still exist, but their weight has changed dramatically. The asymmetric
component is now as important as the symmetric one, and the trend continues. At A_ =236 the
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Fig. 7.3. The main examples for fission of preactinides and actinides. Shown are the yields Y (left-hand column) and total kinetic energies TKE
(right-hand column) as functions of the fragment mass number A. Mass symmetry is always located at the left edges of the viewports. Full dots,
sometimes with error bars, represent the experimental results. The respective quotations can be found in table 7.1. The lines come from the theory,
which is explained in the text. The numbers it takes to construct these lines are given in the tables 7.1 and 8.5.

symmetrical component has almost disappeared; we must use a logarithmic scale to make it visible. The
asymmetric component alone determines the shape of the yield. However, at still larger A, the trend
seems to reverse. In the fission of einsteinium, quite a few events at symmetry were observed, and for
*Fm the central component is dominant again.

Figure 7.3 indeed contains the systematics of the yields. Everything in between can be obtained by
smooth interpolation of neighboring systems. The yield of thorium, for example, is between the yield of
actinium and uranium, and so forth. Similar statements hold for TKE(A) and #(A) in fig. 7.4.

In the whole range of preactinides and actinides certain characteristics of the yield stay remarkably
stable. There is a symmetrical component and one at asymmetry (A =~ 140). Only their predominance
changes. Furthermore, there seem to be only two small sections of A, where dramatic variations occur:
one at A ~227 and the other one at A _ = 257.
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Fig. 7.4. Systematics of the neutron multiplicities as functions of the fragment mass number A. Dots are from experiments, lines from theory. The
references to the experimental works are: for °At [5.24, 5.25], for *’Ac [5.26, 5.7, for °U [7.12], for *2Cf [6.14] and for **°Md [7.13]. The major
part of the theoretical results have been published previously; for the cases *’At and *’Ac see [3.12], for *>Cf [3.1, 3.2], and for ***Md [3.1] as well
as [7.13]. The prediction for the neutron multiplicity of **Th will be discussed in section 8.4. Much in this figure is already history. For example, in

the prediction for **Cf we could now achieve much better agreement with the experimental data by taking the standard splitting into account; three
years ago this was still a too novel subject.

The central components that prevail in the preactinides and in the heaviest actinides do not have
much in common [7.4]. This can already be recognized from the variances oﬁ of the central
components: for astatine Y(A) it is broad, whereas it is narrow for fermium. The difference becomes
even more obvious when one studies the TKE(A) functions on the right-hand side of fig. 7.3. For
astatine the asymmetric events are elevated over the symmetrical ones. One appreciates the significance
of this fact all the more when one remembers that normally asymmetric events must have depressed
kinetic energies due to the well known factor Z(Z,, — Z) in the Coulomb repulsion, cf. eq. (4.10). The
energetic elevation becomes increasingly pronounced as A_, increases. So we see for uranium the
famous dip in TKE(A) at symmetry, which was already alluded to in section 7.1. If the symmetric
components for light and heavy actinides were of the same kind, we should also expect that the heavy
actinides produce a dip in TKE(A). However, the opposite is true: TKE(A) has for einsteinium its
maximum at symmetry, and for fermium we even find a peak. This erratic behavior of TKE(A) cannot
be explained by a single symmetrical fission channel. Instead, it is the superlong channel that is
productive in the lighter actinides (A_, =<252). It produces events at small total kinetic energy and
gives, in accordance with random neck rupture, broad mass distributions as discussed in section 5.5.
And it is the supershort fission channel operative in the heavier actinides (A, =252) that generates
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events with high TKE and narrow mass distributions. We shall also see in section 9.4 that the
microscopic structures of the superlong and supershort channels are different.

When the mass distribution Y(A) and the total kinetic energy TKE(A) are expanded over the full
range of A, we see two Bactrian camels for >°U and two dromedaries for **Fm. This correspondence is
misleading since it suggests that Y(A) and TKE(A) contain similar information which is, of course, not
true as can be seen from the other examples in fig. 7.3. Y(A) of 2°U tells us that there are few fission
events at mass symmetry. The value of TKE(A) of *°U, on the other hand, reveals that these few
events come with a very low total kinetic energy. Therefore, one can derive the existence of the
superlong channel from TKE(A), while a similar conclusion based on Y(A) is hard. Analogous
arguments hold for *’Fm: its yield shows only the supershort component; contributions from the
standard channel are swamped by statistical noise. However, the sharp drop of TKE(A) for increasing
A proves the presence of the standard channel.

The lines of figs. 7.3 and 7.4 represent theoretical results from the joint efforts of random neck
rupture and the quantum-mechanical potential-energy calculations which will be detailed in ch. 9. The
potential-energy calculations give us the prescission shapes (collected in table 8.5). From the prescission
shapes, individual yields Y_(A), total kinetic energies TKE_(A) and neutron multiplicities #,(A) are
obtained using the procedures compiled in ch. 4. The subscript ¢ labels the various channels. When we
wish to compare with measurements, we form the superpositions

Y(4)= 2 p.Y(4), (7.1)
TKE(A) = 2, p.TKE (A)Y.(A)/Y(A), (7.2)
H(A)= 2 p (A (A)]Y(4), (73)

where the channel probabilities p, indicate how much channel ¢ is frequented. They are normalized as
2p.=1. (7.4)

All functions Y, (A), TKE _(A) and v, (A) are output of the procedures of random neck rupture.
However, for information reduction one may write without loss of accuracy

1 (A-A) (A-—A_+A)
YC(A) = W [exp(— —2‘0_—3““—> + exp(— 20;(\ )] (75)
and
TRE(4) = — A Aa-4) _ 7xp (76)

Ac(Acn_Ac)_a-i,c ‘

so that two functions are defined by three numbers: the average mass A, the mass variance o, , and
the average total kinetic energy TKE,. Random neck rupture delivers these numbers as byproducts.
They are quoted in table 7.1 and are equipped with a superscript ¢ to indicate their theoretical origin.

The present theory of multichannel fission has a weakness: while it seems suitable to compute the
prescission shapes, it cannot provide accurate values for the channel probabilities p_. The graphs in fig.
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7.3 were made by taking the computed functions Y,(A), putting them into (7.1) and adjusting the p,
until the best fit to the experimental yield was achieved. The thus obtained p, are listed in table 8.5.
They must be considered as experimental data.

The honest way of comparison between theoretical and experimental items is presented in table 7.1.
The experimenters take their data and fit them with formulas essentially identical with (7.1) to (7.6).
However, they keep all the parameters free for adaption. In this way they find experimental values for
A,, o, . and TKE_. The first state-of-the-art evaluation of this kind was made by Kanitter et al. [7.11].

With a small modification we can now repeat the claim made at the beginning of section 3.1: the
exit-channel observables are slaves of the prescission shapes. Now that we have understood this
principle by means of the yield and the total kinetic energy, the neutron multiplicities »(A) cannot
cause us any major surprises.

For At the prominent contribution comes, as we see in fig. 7.3, from superlong, that is from a
symmetric prescission shape. Consequently, according to rule (2) of random neck rupture (section 3.1),
we expect a v(A) that looks like an ascending line; and this is what we see in fig. 7.4. The standard
component is so weak that it was not seen in the classic multiplicity measurements.

However, in “’Ac the standard prescission shape is as often made for as superlong. Since the
standard shape is asymmetric, we expect from it a sawtooth-shaped neutron multiplicity; see again rule
(2) in section 3.1. Moreover, as contributions from the superlong channel are still large, we should see
the sawtooth superimposed on an ascending line. From an inspection of the superposition formula (7.3)
we learn that the ascending line should show up at mass symmetry whereas the sawtooth should have its
domain at the outskirts; and this is what we see in fig. 7.4.

In *°U the standard prescission shape generates the aforementioned camel humps in the yield Y(A).
The humps are so close to each other that they almost swamp the small contributions from the
superlong channel. »(A) looks like a single sawtooth. However, there is a means to detect the presence
of the superlong channel even in such difficult cases: one plots the total multiplicity »(A) + ¥(A_, — A).
The total multiplicities are distinguished in fig. 7.4 by the crosses with open circles. The corresponding
theoretical line is broken. Now if events from the superlong channel occur, we observe a steep rise in
the total multiplicity for A=~ A _ /2. This is in accordance with the random neck rupture rule (1) in
section 3.1. One can go one step further and compute the channel-averaged total neutron multiplicity

5= 5 S (5A) + HAo = ANY(A). 1.7)

The multiplicity »,, from the superlong channel is considerably larger than that from the standard
channel v, see table 7.1.

In addition, the neutron multiplicity of >*Cf is dominated by the standard channel’s sawtooth curve.
However, at very large asymmetries two new sawteeth appear. This feature is produced by the
superasymmetrical prescission shape [cf. fig. 3.1d], which gives contributions to the yield at very large
mass asymmetries and induces a multiplicity »,(A) that exhibits an even more prominent sawtooth than
sta1216d0ard. The properties of the superasymmetric fission channel will be discussed in section 8.5.

Md fissions mainly through the standard and supershort channels. Supershort is symmetrical;
hence it generates a straight multiplicity curve. However, the total neutron multiplicity 7 is small (cf.
table 7.1) since the supershort prescission shape is short. When we combine this with the sawtooth

shape from the standard channel, we expect a rift at mass symmetry. Precisely this can be seen in fig.
7.4.
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Neutron multiplicities »(A), therefore, do not seem to contain information that exceeds the
information obtained from yield and total kinetic energy. This is quite a strong validation of random
neck rupture. Furthermore, the functions »(A) are important for many practical purposes, but their
measurement is difficult even today. Therefore it is useful that we have a theory to predict these
functions, typically with an accuracy of one neutron. In fact, much of the calculated data in fig. 7.4 is a
proper forecast. For example, the three sawteeth in *Cf were published first as computational results
[3.1]. The rift in the neutron multiplicity of **°Md was computed before it was measured [3.1,7.13], and
it seems that for such an important fissioning nucleus as ***Th no measured #(A) is available. So we
thought it would be apt to have at least a prediction.

One can increase the accuracy of the predictions by taking the characteristics of the prescission shape
not from the potential-energy calculations but from the experimental yield. This corresponds to the first
strategy discussed in section 4.2. Figure 7.4 was constructed in this way. Had we worked with
theoretical data only, we would have obtained the same features as are shown now.

7.3. Channel-differentiated TKE and A, systematics

The two most important characteristics of the mass and total kinetic energy distributions are the
average mass number A, of the heavy fragments and the average TKE. The overall systematics of TKE
is displayed in fig. 5.1. The overall systematics of A, is so simple that it needs no graph: A,; stays
almost constant at 140 for fission of nearly all the actinides. With the materials presented in fig. 7.3 and
table 7.1 we can now establish differentiated systematics, that is TKE and A, for every fission channel
severed. The result can be seen in fig. 7.5. The features of the standard channel are shown by the full
lines, the dashed lines are related to the superlong channel and the supershort channel is distinguished
by the dots.

Let us start with fig. 7.5b. The standard channel, split into components I and 11, stays quite close to
the dash-dotted line. But the dash-dotted line represents the overall TKE systematics so that we have
another reason for the naming of the standard channel. Anticipating section 8.4, we now state: the
standard II is the most bountiful channel in most actinides. Therefore it is the proximity of standard I1
to the overall TKE systematics that counts. The supershort channel gives, naturally, much too high
kinetic energies while the superlong channel’s TKEs are much too low. Notice the convergence of the
superlong TKE to the overall systematics for light systems. Thus for astatine, where the superlong
channel is prevalent, its characteristics do not deviate much from the liquid-drop behavior.

Figure 7.5c represents the differentiated systematics of the mean mass number A, of the heavy
fragments. We display it by plotting the light fragment mass number A, as a function of A. (Clearly,
the system size A, is given by A + A,;.) As desired by nature, the standard channel, in particular
standard II, remains nearly constant at AHz14O. The superlong and supershort channels enforce
symmetrical fission. Their A, appear thus on the diagonal.

What leaps into mind when one considers figs. 7.5b, c is the smooth behavior of these characteristics.
From this it is inconceivable how the exit channel observables can change drastically as is shown in figs.
7.3 and 7.4. In addition, it strikes one that the lines for the various channels are drawn only for limited
ranges of the system size.

Both questions can be answered with fig. 7.5a. There the channel probabilities p_ for the three main
fission channels are depicted. This diagram tells us that for systems smaller than A , =250 the
supershort channel disappears and the respective probability p  is zero. For systems larger than
A, =260 the superlong channel breaks up. The standard channel, in contrast, exists everywhere. The
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They were computed using the “liquid-drop-energy minimization method” [variant (ii) in section 9.2] and are therefore less accurate than the values
given in table 8.1. We decided to make the juxtaposition in order to show the reliability of our searching techniques.

drastic change of the observables is caused by the drastic variation of the population probabilities p,.
This variation can be related to the relative height of the barriers. We shall discuss the respective results
in section 8.3.

Enticed by recent data from a heavy-ion reaction in which apparently the nucleus *’[108] was
produced [7.16], we calculated a channel graph like fig. 7.1 for this system and a few others in the same
mass range. We saw no qualitative changes as compared to systems like ’Fm. The standard and
supershort channels still exist. But their properties are somewhat altered. The supershort channel is
quite long so that the supershort TKE systematics approaches the overall TKE systematics, as shown in
fig. 7.5b. The standard channel, for its part, becomes exceedingly long and so gives rise to events with
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small TKE. This is indicated by the detached piece in fig. 7.5b. Correlated with the large length of the
prescission shape is a huge value of the standard deviation o ,, see table 7.1. But the standard channel’s
asymmetry also grows. This causes a mean mass number A,, that deviates substantially from the 140
systematics, see in fig. 7.5c the piece of line at A, = 160. These theoretical resuits have nothing to do
with the data from the heavy-ion reaction reported in [7.16]. The reason is probably that in the
experiment something like a compound nucleus was never formed so that the observations reflect
entrance channel effects.

7.4. The independence of fission channels

From the theoretical point of view the existence of several fission channels is proven by calculations
as described in ch. 9. However, a sceptic who does not believe in theory might ask for direct
experimental verification. After all, nature does not always comply with Gaussians, as in eq. (7.5), so
that the whole multichannel business might not be more than a fitting device. Stocker, for example,
showed that the somewhat angular shape of the yield from uranium (see fig. 7.3) can be described by a
Pélya distribution [7.17]. Similarly, the yields calculated in the scission-point model usually do not have
a Gaussian shape [1.4], and it makes no sense to claim that they are composed of Gaussians.

To make the point clear: we do not consider the Gaussian (7.5) to be more than an approximate
representation of the yield from one fission channel, but the independent existence of the standard,
superlong and supershort channels, and even the standard I/II splitting (section 8.4) is proven by
experiments.

The most convincing evidence was obtained by Hambsch and co-workers [1.8]. They studied
neutron-induced fission of ***U at various impact energies E, of the neutrons. It turned out that changes
of E_ by a few eV could alter the overall TKE by half an MeV. Inspection of the data revealed that the
production of fragments in certain mass ranges could be suppressed or enhanced by tiny changes of E_ .
An example is shown in fig. 7.6. Conjectures that such variations were related to the spin of the
compound nucleus turned out to be wrong. The scission-point model, on the other hand, is quite unable
to explain such data: it must attribute a change in the yield to a change of temperature. But a change of
E_ by a few eV does not alter the temperature of a fissioning nucleus. The only explanation of the
experiment [1.8] is a bifurcation point: somewhere in the evolution to fission, the nucleus must have the
choice to follow at least two different trails, and the decision must not cost energy. Exactly this point is
described by channel graphs like fig. 7.1.

15

YA E, YA, therm]

{ E,=8.77eV
1dT=4 Al
T T T T T T T T T
80 100 120 140 160
Fig. 7.6. Shown is the ratio Y(A, E,}/ Y(A, therm) of mass yields from “**U(n, f) measured at the neutron impact energy E, with total angular
momentum J and parity o, and at thermal impact energies [1.8]. The dip at A ~ 118 indicates suppression of fission through the superlong channel

by 50%. Due to the representation by a quotient, one cannot deduce the width of the superlong component from this figure. A more reliable width
is displayed in fig. 1 of [7.29].
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Similar evidence, but with very different methods, was obtained by Hulet and co-workers [1.11].
They showed that the addition of only one neutron to a spontaneously fissioning nucleus can drastically
change its mass and TKE distributions, see fig. 5.3. Again, as in the experiment [1.8], the changes in
the observables are much too large in comparison with their cause as to be covered by a scission-point
model. Here as well, the only explanation is a bifurcation point. The addition of the single neutron lifts
a certain barrier close to that bifurcation point by a fraction of an MeV. This is enough to make the
respective fission channel less attractive. We shall discuss the mechanism in section 8.3.

The evidence presented in the figs. 5.3 and 7.6 refers to the existence of the supershort, superlong
and, of course, the standard channels. The first evidence for the independence of the standard I and II
channels was presented in [1.8]. Most beautiful in this respect is, however, the recent work by
Wagemans and his colleagues [7.7,7.8]. They studied the isotopes ************Py and demonstrated
that the addition of only two neutrons affects very much the way in which fission drifts through the
standard I and standard II channels. For this too we can propose a theoretical explanation, see section
8.4.

7.5. How can one steer nuclear fission?

Only when we can change things, are we sure that we understood something. So how can we use the
knowledge on channels to modify fission?

The most straightforward way is to increase the excitation energy of the compound system. This
increases the probability that the nucleus overrides not only the lowest but also the higher barriers. The
most important application of this technique is everything concerning the superlong fission channel. As
can be seen in fig. 7.1, the barrier of the superlong channel is higher than that of the standard channel,
and this is typical for all actinides. Thus we are not surprised when we find in fig. 7.7 much more yield
from the superlong channel at the higher excitation energy. A behavior as shown in fig. 7.7 was
formerly interpreted as melting of quantal shells [7.18]. Although such an interpretation is correct at
high excitation, it cannot be true for the first few MeV where the destruction of BCS pairs tends to
reinforce the shells [1.7].

A more subtle way to reshuffle the frequentation of the channels has already been discussed in the
previous section: the various resonances in neutron-induced fission give different yields. But it is not
clear what it is in a fixed resonance that gives rise to the observed yield. It remains to find the true
switch. Furman and Kliman [7.19,7.20] demonstrated the effect of the Bohr transition states
[7.21,7.22,1.7] on the decision at a certain bifurcation point. To understand the arguments of Furman
and Kliman, it might be best to envisage fission in two stages: in the first one, the entrance, the neutron
is captured, the compound nucleus formed and the top of the channel barrier climbed — only one barrier
is considered. In the second stage, the exit, the nucleus descends and scissions. In other words, the
entrance connects the resonance A with the transition state J” K, while the exit joins J” K with the
prescission shape c. The total angular momentum J and the parity # are good quantum numbers. But
none of the labels A (resonance tag), K (projection of angular momentum on the body-fixed axis) or ¢
(channel tag) expresses a conserved quantity. Hence the only relation we can expect is by probabilities.
Let py , denote the probability that the nucleus goes from the resonance A to the transition state J” K.
Next take p_ . as the probability for the transition from J” K to c¢. Then according to probability theory
plus a Markovian assumption we must have

Peca =§4 Pex Pkoa - (7.8)
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Fig. 7.7. Mass and total-kinetic-energy distribution Y(A, TKE) from Fig. 7.8. The channel probability p,_,; , as a function of the entrance
photofission of *>Th. In contrast to the yields Y(A) assembled in fig. probability p,_, ,. The results for the various resonances A appear as
7.3 we have here a contour plot of the yield as a function of fragment dots with error bars. The straight line displays the best linear fit
mass number A and total kinetic energy TKE. Darker regions corre- [7.20]). Al these resonances have J"=4". They can only reach the
spond to higher yield. The two heavy wings come from standard two states K=1 and K=2. This makes evaluation of (7.8) very
fission. The events at symmetry (A =~ 116, TKE =~ 150 MeV) are prod- simple because p,_,,=1-pg_,,. On the left-hand side of (7.8),
ucts of the superiong channel. E_ denotes the energy of the electrons only the probabilities for fission through the standard I and II
that generate the fission-inducing photons by bremsstrahlung. The channels have been considered (see section 8.4). This is legitimate
difference between the average excitation energies is considerably since the contribution of the superlong channel is tiny in **U(n, f).

smaller than 4 MeV, perhaps 1 MeV. The data is taken from [7.6].

The p,, are the same channel probabilities as used in equations (7.1)-(7.4). They were only
customized by A.

The probabilities p. , and p, , are known for SU(n, f): the P, can be obtained from fits of the
yield, as described in section 7.2. Tables for 2°U are given in [1.8]. The Px., are derived from
interference effects in the energy dependence of the spin-separated fission cross-section. Pertinent data
are collected in refs. [7.23-7.25]. However, we do not know the p, .. Nevertheless, we can check eq.
(7.8) since it postulates a linear relationship between the known probabilities. Such a check is shown in
fig. 7.8. The figure shows first that the Markovian assumption seems to be right. Otherwise the p,_ .
would also depend on the resonance A, and this would impair the linear dependence. Second, we see
that the channel probabilities p, , can in fact be changed if the transition state is altered. For example,
the probability p._,,, , is 0.21 when fission proceeds via the state 4 1. The same probability is only 0.19
when the state 4™ 2 is passed.

It deepens insight when one appreciates the difference between the two probabilities p, . and p, .
The randomness described by the entrance channel probabilities p, , is caused by the complex
multiparticle interactions which form the compound states. Strong Coriolis forces then mix several
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transition states J” K into one compound state A [7.26]. Therefore, we expect the p, , to depend
irregularly on both indices. In contrast the exit-channel processes can be figured as the propagation of a
wave packet in the low-dimensional space of deformations (think of our variables /, r, z, s, c, section
2.1). Thus only smooth changes of the p, , with K should occur. In fact, one can infer this from fig. 7.8:
with eq. (7.8) and the knowledge that only two intermediate states are involved we find p,_; x_; =
0.21 and p._; x-, = 0.19, whereas p,_, , actually varies between 0 and 1.

One may even picture these results if one accepts a popular interpretation of the transition states
[7.22, p. 42]: states with negative parity and odd K are said to suppress mass asymmetry while those
with negative parity and even K do the opposite. The standard I channel is the more symmetric one (see
section 8.4). Hence, it is plausible that it is more frequented when the symmetry-friendly state 4™ 1 is
involved.

A fine discussion of the same topic with somewhat different emphases was presented by Moore and
co-workers [7.27].

The Markovian assumption underlying eq. (7.8) amounts to the assertion that it does not matter how
a certain K is reached. Hence fission by gamma rays and other particles should reveal similar
regularities as those displayed in fig. 7.8. The first steps in this direction, involving a coincident
measurement of mass and angular distributions, were undertaken by Wilke et al. [7.28].

The quantum number K describes properties of a’solid body. It is not cogent to associate it with
dynamic deformations. If one wishes to affect the dynamics at the bifurcation points, one should rather
impose vibrations with definite symmetry on the nucleus. This was recently achieved by Weber et al.
[7.29]. The tool was inelastic electron scattering with coincident registration of the fragments and the
scattered electrons. In this way not only the energy but also the multipolarity of the excitation was
controlled. A typical result is shown in fig. 7.9. For all multipolarities, the yield at symmetry grows with
increasing excitation energy. This is the simple effect discussed in the context of fig. 7.7, namely that a
higher excitation energy facilitates penetration of the superlong barrier. But the superior information is
contained in the enhanced increase of the superlong yield when even giant resonances (E2 and EQ) are
excited. This again is plausible since the superlong channel is a symmetrical channel, whereas the
standard channel is asymmetrical, see fig. 7.1.

In summary, we know nowadays of three ways to steer fission: by excitation energy, by making for
transition states with chosen K and by giant resonances with definite multipolarity.
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Fig. 7.9. Fission of **U by virtual photons exciting the giant monopole (E0), dipole (E1) and quadrupole (E2) resonances. The ratios Y/ Y, of
yields at mass symmetry A = 119 and asymmetry A =~ 140 are shown as functions of the excitation energy E*. Around A ~ 119 and A = 140 suitable
mass windows were set up. Details can be found in [7.29] where the data is also taken from. The kink at E* =12 MeV is related to second-chance
fission and has hence no meaning for the present subject. Therefore, for the straight-line fit, only the data distinguished by the full symbols were
taken.
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8. Peculiarities of fission channels
8.1. The tree of nuclear fission

Today it is not a real problem to compute the potential energies E, , of a deformed nucleus. It takes
more skill to extract information from such a high-dimensional data set. Clearly, the function E, ; has
minima and saddle points, but how are they connected to each other? One way to see this could be by
dynamics: one should start on one of the saddles, push the nucleus in some direction, and look to which
minimum it moves. This would be feasible in calculations only, and even there it cannot be done at
present since reliable enough inertial tensors are not available. One may, nevertheless, obtain
information on the connectivity from the potential energy alone, namely by paths of steepest descent.
This has been done in most of the work reviewed here, and the connecting paths are now called fission
channels.

Usually at this point nuclear purists start to assert that such paths have no meaning at all. They argue
that fission is a dynamical process so that one should build a metric from the inertial tensor, derive new
coordinates based on that metric so that the inertial tensor becomes diagonal, and display the potential
energy in these coordinates. In other words, the potential energy must undergo a topological
transformation before it becomes useful for interpretation. As long as this transformation is not known,
only those properties of the potential energy must be taken seriously that remain invariant under
diffeomorphic transformations. The minima and saddle points are invariants, but the paths of steepest
descent change. As an example one usually quotes a certain section from Wilet’s booklet [3.3, section
3.3.1] where it is actually shown that an appropriate transform makes a valley into a ridge.

While all these arguments are correct, they do not apply to the proper problem. In fact, chemistry
uses similar procedures as modern fission theory to compute the various reaction paths of a chemical
system. The same discussion as in nuclear physics went on in chemistry, but was solved there at least 12
years ago, see the book by Mezey [8.1] and the references therein. The relevant line of argument is
short enough. Nobody is really interested in valleys. What one needs are low-energy connections
between the ground state (a minimum) and the isomeric state (the so-called second minimum), between
the isomeric state and the barrier (a saddle point), and between the barrier and the prescission shape (a
minimum at the boundary of the deformation space). The connecting paths between invariant points are
known to be homotopically equivalent or, in the more general case, they belong to one of the
homotopy classes [8.1]. In popular terms, all connections differ from the dynamical path just by some
bulges. So it is quite fair to select one of the paths, for example, that computed by steepest descent, as a
representative.

Of course, one must not draw conclusions from geometrical peculiarities as for example the big loop
in fig. 7.1. On the other hand, it is not correct to claim that lack of topological invariance invalidates the
paths computed from the potential energy alone. With these reaction paths, the questions that may be
answered are like this: “Which barrier belongs to which prescission shape?”” The answers are valuable
enough since the height of the barrier affects the probability by which the specific prescission shape is
reached. Another example: bifurcation points are generally not invariant. However, the position of a
bifurcation is bracketed by two stationary points. Hence one can say whether two reaction paths have
two barriers, each one for its own, or just a common one.

It might be beneficial to have a skeleton diagram without geometrical peculiarities. Find a Cayley
tree in fig. 8.1. Just the minima appear (O), the barriers (X ), the bifurcation points (@), the prescission
shapes (+) and their connections (heavy lines).
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Fig. 8.1. Cayley tree of nuclear fission. Emphasized are distinguished points of the potential energy as minima O, barriers X, bifurcation points @
and prescission shapes +. An attempt was made to give to this picture, which is to display topological relations, also some quantitative correctness.
For example, the standard Il prescission shape is longer than that of the standard I shape. The biggest shortcoming is the position of the superlong
barrier, which has much less elongation than this figure suggests.

Compare fig. 8.1 and fig. 7.1. Californium would start to fission from the deformed ground state
(gs), surmount the first standard barrier, pass the second minimum (2nd min) and the bifurcation
points, overcome the second standard barrier, and rupture at the standard II prescission shape. At the
bifurcation points, and nucleus might decide to enter the supershort or superlong channels and to
rupture rather at the supershort or the superlong prescission shapes. According to our calculations, a
special role is played by the deformed ground state: it is at the same time the minimum and the
bifurcation point to the superasymmetric channel.

Figure 8.1 has most similarity with the (z,[) projection in the bottom-left part of fig. 7.1. So
downward motion in fig. 8.1 means an increase of semilength /, while motion to the right refers to the
growth of asymmetry z.

Figure 8.1 is intended for general use in low-energy fission. It contains a few features that do not
show up in fig. 7.1. There is, for example, no spherical ground state in californium. There is, however,
a splitting of the standard channel into standard I, standard II and perhaps even standard III (ordered
with respect to asymmetry). Furthermore, no standard secondary barriers can be seen in fig. 7.1. It
seems that they matter only for nuclei lighter than californium. Finally in fig. 8.1, the second minimum,
the supershort bifurcation, the superlong bifurcation and the second standard barrier are shown to be
sequential. But in fig. 7.1 the superlong bifurcation point occurs only after the second standard barrier.
The situation shown in fig. 8.1 is nevertheless more typical. In the heaviest actinides (e.g. fermium) the
second minimum and the supershort bifurcation point coincide. By contrast, in the lighter actinides
(e.g. uranium) the superlong bifurcation point coincides with the second minimum.

For different nuclei different branches of the Cayley tree thrive. For nuclei as light as polonium, the
spherical ground state is relevant. The supershort and superasymmetrical channels do not exist. In
heavy nuclei such as fermium, the spherical ground state is not available, while all the channels apart
from superlong seem to be present.
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Besides sheer nonexistence, a fission channel may become inaccessible when its barrier is too high.
In californium, for example, the supershort channel does exist. But its barrier is so high that
comparatively few events will fission through it. Likewise, the superasymmetric channel can produce
only a very small yield.

The quantitative supplement of Cayley trees like fig. 8.1 are tables. In these tables, the distinguished
shapes and their energies are recorded. The energies are all calculated using Strutinsky’s well known
procedure [1.2]. Computational details will be given in ch. 9.

See, for example, the computed ground states in table 8.1. For each nucleus, its coordinates in the
five-dimensional space of deformations as introduced in section 2.1 are listed. In addition, the
computed and measured binding energies E, are compared. The comparison reflects the accuracy of
Strutinsky’s method: around 1 MeV. Furthermore, it is noteworthy that the transition from the spherical
to the deformed ground states (cf. fig. 8.1) occurs about where it is expected, namely not too far away
from lead. One can localize the transition by the jump of the semilength values from /=7.3 to
[=9.0fm. The nuclei close to uranium have the celebrated diamond shape, perceptible by the large
negative values of the curvature c; the diamonds round out in the heavier nuclei. In the region where
the change from spherical to deformed ground states occurs, notably in the actinium isotopes, we find
large octupole deformations, identifiable by the large values of the asymmetry coordinates z and s. This
too is a known feature [8.2-8.4].

Tables like 8.1 are known for a long time [8.5, 8.6]. However, we need this one since several other
tables are based on it. For example, barrier heights are written as excesses over E ..

The coordinates and heights B, of the standard barrier are presented in table 8.2. Comparison with
experimental values demonstrates again agreement within the limits of Strutinsky’s method. Note the
much worse barriers in fig. 7.1. The difference arises from the use of different shape representations.
For fig. 7.1 we took the three-parametrization (2.14), whereas table 8.2 was established with the more
flexible five-parametrization (2.1).

All nuclei listed in table 8.2 have a double-humped standard barrier, see figs. 7.1 and 8.1. Table 8.2
presents only the higher one. In the lighter nuclei, the second hump dominates. It is located at larger
values of [=12.6,...,11.3fm. The first hump (/=10.1,...,10.7 fm) excels in the heavier nuclei.
That such an exchange occurs, is beyond doubt. However, the precise point in the periodic system is
debatable. For comparison we contrast our results with those quoted in [8.7] (where 1st and 2nd are
called A and B). It appears from table 8.2 that our exchange occurs at too large mass numbers. This is a
weakness one has to face in all computations like this: the limited accuracy of the Strutinsky method is
bad enough to shift the point where two energies are equal quite a distance through the periodic table.

Again, tables like 8.2 have been previously published, see, for example, [8.5], but we also need this
one for reference.

Table 8.3 is new; a list of superlong barriers. Its best feature is probably the unique compilation of
experimental superlong barriers that we owe to H. Nakahara [8.11]. The computed values do not seem
to be bad either. Only around thorium do the theoretical and experimental values disagree. The shift of
the superlong barrier to larger values of / with increasing mass number is striking. This is opposite to
the behavior of the standard barrier. We give no superlong barrier for the heaviest nuclei, although
even there rudiments of the superlong channel do exist. However, we found no low-energy connection
between the barrier and the superlong prescission shape and therefore judged that in nuclei such as
fermium no superlong channel exists [5.9]. We shall discuss data from table 8.3 in section 8.3.

Because of those rudiments it is fair to say that the superlong channel is “broken” in the heaviest
nuclei. In contrast we do not see the slightest vestige of the supershort channel in nuclei much lighter
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Table 8.1
Ground states, characterized by computed shape parameters /, r, z, ¢, s and energies E;s. The
shape parameters are introduced in eq. (2.1). They are turned into shapes according to
equations (2.3) and (2.9-2.13). Experimental binding energies E;, are taken from [4.6]. The
table also lists all the nuclides for which we examined the fission channels. Details of the
computation are explained in ch. 9

Nucleus  I(fm) r(fm) z(fm) c(fm) s(fm) E (MeV) E,, (MeV)

20pg 7.3 73 0.0 -72 00 1644.4 1645.2
AL 7.3 73 0.2 -72 01 1639.2 1659.3
2Ra 7.4 7.5 0.1 -72 01 1724.4 1725.2
?'Ra 7.3 7.5 0.1 ~72 01 1735.3 1736.2
26A¢ 8.8 72 1.1 -82 0S5 1728.8 1730.2
2Ac 9.0 72 1.0 -81 03 1735.6 1736.7
2BA¢ 9.0 7.1 0.5 -78 02 1740.9 1741.8
22Th 9.1 7.1 0.3 -75 01 1765.9 1766.7
pa 9.1 72 0.0 -80 00 1771.6 1772.0
By 9.1 7.1 0.6 -77 02 1789.6 1790.4
4Np 9.1 7.1 0.7 -78 02 1775.0 1776.0
BNp 9.1 7.1 0.6 -74 02 1787.6 1788.7
*Np 9.2 7.1 0.5 -76 0.2 1806.5 1807.0
#opy 9.2 72 0.1 -79 01 17873 1788.4
Z8py 9.1 71 0.2 -72 01 1800.3 1801.3
#py 9.1 7.1 0.3 -72 01 1812.7 1813.5
2py 9.0 7.1 0.0 -73 0.0 1824.5 1825.0
*Am 9.0 7.1 0.2 -6.6 0.1 1810.2 1811.3
*Am 9.0 7.1 0.0 -64 0.0 1829.5 1829.9
*Am 9.0 7.1 0.3 -66 0.1 1841.0 1841.3
*2Cm 9.1 7.1 0.1 -64 00 1822.2 1823.4
Cm 9.1 71 0.0 -65 0.0 1835.1 1835.9
Cm 9.1 7.1 0.3 -64 0.1 1858.9 1859.2
20t 8.9 71 0.1 -48 00 1881.3 1881.3
BSEg 8.8 71 0.1 -56 00 1898.0 1896.7
I 8.8 7.1 0.0 -56 00 1903.4 1902.6
8Fm 8.8 7.2 0.1 -5.7 0.0 1914.8

®Fm 8.7 7.1 0.1 -52 00 1919.8

*Md 8.8 7.2 0.1 -55 0.0 1918.8

2'Md 8.7 7.2 0.1 -47 00 1924.1

¥No 8.8 7.2 0.1 -53 00 1911.9 1911.2
[104] 87 72 0.1 ~53 00 1918.6 1918.2

21211001 Q6 13
{08} - - 62 23 64 19828

than californium. The characteristics of the supershort barrier are listed in table 8.4. The supershort
barriers are lower than the highest standard barriers, except for californium, since in these heavy nuclei
the first standard hump is dominant. The second hump, however, still exists. Its features are also
collected in table 8.4. We shall take advantage from this juxtaposition in section 8.3.

Barrier tables can be novel when hitherto unknown barriers are produced. But table 8.5 of
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Table 8.2
Standard barriers B, otherwise similar to table 8.1. Experimental values (e) stem from [8.7]

Nucleus [(fm) r(fm) z(fm) c(fm) s(fm) B} (MeV) B, (MeV)

2pg 124 42 3.1 47  -12  23.8(2nd) 244

At 12.6 39 26 60 -15 208(2nd) 198

“Ra 11.2 52 3.1 14 -04  81(2nd) 6.5+0.5
""Ra 112 5.4 2.9 0.9 -04 7.4 (2nd) 8.0

ZAc 11.3 5.3 3.1 0.8 04 7.8 (2nd) 8.0

A 113 53 29 1.0 -03 73 (2nd) 7.3

Ac 11.3 54 2.8 06 -04 75 (2nd) 7.2

“Th 12 54 29 05  -04  72(2nd) 6.2=0.2 (2nd)
“pa 11.3 5.4 2.8 08 -04 7.6 (2nd) 6.1 (Ist)

Py 11.3 5.0 3.0 18 09 67 (2nd) 5.6+0.2 (Ist)
“Np 11.6 52 2.9 1.1 -06 6.5 (2nd) 5.5+0.2 (Ist)
**Np 1.2 53 3.2 08 -05 6.6 (2nd) 58+0.2 (Ist)
Np 11.3 53 32 09 -06  7.3(2nd) 5.9+0.2 (Ist)
py 11.6 53 2.8 1.0 =05 64 (2nd) 5.5+0.2 (Ist)
#py 11.2 5.3 32 08 -06 7.0 (2nd) 5.620.2 (1st)
Am 11.4 53 3.2 08 =05 7.2 (2nd) 6.5+0.2 (Ist)
*Am 11.4 53 3.2 08 05 7.4 (2nd) 5.9+0.2 (Ist)
*Am 11.3 5.4 3.0 08 -05  68(2nd) 5.9+0.2 (Ist)
*Cm 10.5 6.5 0.3 -3.5 0.0 6.6 (1st) 5.8+0.4 (Ist)
*Cm 10.4 6.5 0.5 -3.0 02 6.7 (Ist) 5.8+0.2 (Ist)
*Cm 10.2 6.5 0.3 -19 0.0 6.5 (lst) 5702 (1st)
e 10.1 6.6 0.0 -2.2 0.0 6.9 (Ist) 5.3 (1st)

¥ Es 10.4 6.5 0.5 -22 0.1 7.5 (1st)

*Fm 10.3 6.6 0.4 -2.8 0.1 7.4 (1st)

Fm 10.4 6.5 0.5 -2.3 0.1 6.8 (lst)

*Fm 10.6 6.5 0.4 -18 0.1 7.3 (st

*Md 10.5 6.8 0.3 -39 0.1 6.9 (Ist)

*Md 10.7 6.6 0.2 -22 0.0 7.2 (1st)

“*No 10.6 6.8 0.4 ~4.1 0.1 74(lst)

*1104] 105 6.8 0.3 -42 01 72 (1st)

721108] 106 6.8 0.3 -4.1 0.1 5.5 (lst)

prescission shapes even introduces a new concept. Prescission shapes are extrema of the potential
energy too, but in general they are not stationary points as they are located on the border of
deformation space. We fix this border by the radius r of the neck: » > 1.5 fm is the condition for a shape
to lie within the deformation space. As soon as the radius becomes smaller, we assume that rupture is
finished and fragments are born. We do not need this condition for most superlong prescission shapes as
we find them in minima (4th min in fig. 7.1). See section 9.3 for a justification.

Table 8.5 is the foundation of most of the results involving random neck rupture in low-energy
fission. This table contains the raw data for the computation of yields and total kinetic energies as
presented in the sections 7.2 and 7.3. They will once more prove their usefulness in section 8.2. Table
8.5 presents the geometrical data of the prescission shape (/, r, z, ¢, s) and the energy of descent E__
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Table 8.3
Superlong barriers B,;, otherwise similar to table 8.1. Most experimental values are quite new. They are
referenced in the last column. This table contains a few predictions concerning important nuclei. For
example, no experimental value of the superlong barrier of uranium seems to be known. There is data by
Straede et al. {eq. (3) in [8.12]}, but it is not sufficient

Nucleus [(fm) r(fm) z(fm) c(fm) s(fm) B, (MeV) B (MeV) Reference

2%po 11.4 5.1 0.0 19 0.0 21.6 213 [8.8]
At 11.4 5.1 0.1 13 0.0 18.8 17.2 8.8]
Ra 122 5.2 0.4 -05 00 12.6 6.7=0.5 (8.9]
*Ra 11.8 52 0.1 -01 00 13.0 9.0 [8.9]
eAc 12.1 5.3 0.2 0.0 00 11.6 9.2 [8.9]
ZAc 11.8 5.2 0.2 -01 0.0 11.2 8.4-8.5 [8.8,8.9]
ZAc 1.8 52 0.6 -03 0.0 12.2 9.2 (8.9]
1Th 12.7 5.6 0.0 00 00 11.8 8.5-8.7 [7.6]
*pa 126 55 1.3 -1.7 00 11.6 9.0 [8.11]
Uy 124 55 0.7 -13 00 10.9

2Np 126 5.5 1.0 -1.8 00 9.7 6.8 [8.11]
**Np 12.5 5.5 0.7 -18 00 10.4 7.4 [8.11]
Np 12.4 5.5 0.5 -09 01 10.2 8.2 [8.11]
Z8py 12.5 5.5 1.0 -12 02 9.0 7.6+0.2 [8.11]
#py 12.5 5.5 0.6 -12 00 9.2

*°Am 12.5 5.5 0.7 -14 00 9.0 8702 (8.11]
*Am 12.5 5.5 1.0 -08 00 8.7 8402 (8.11]
*Am 12.5 5.6 0.7 -07 00 8.7 8.5+0.2 [8.11]
*Cm 12.5 5.5 1.0 -13 00 7.5 8.0+0.4 [8.11]
*Cm 12.5 55 0.9 -09 01 8.0 81202 [8.11]
2t 12.6 5.5 0.0 0.6 0.0 7.5

defined as the difference between the potential energies of the ground state (table 8.1) and the
prescission shape. Notice that it costs energy to put astatine into its prescission shapes, whereas in all
other nuclei energy is gained. Table 8.5 is incomplete in so far as it lists the standard I and standard II
prescission shapes only for nuclei around plutonium. Standard I/1I splitting is in fact most prominent in
the plutonium isotopes. Nevertheless, sample calculations suggest that the splitting also exists in
astatine, actinium and einsteinium. The table is overcomplete as it contains channel probabilities p;.
We explained in section 7.2 how they were obtained. They will be helpful to judge the relative
importance of the various prescission shapes.

8.2. Kinetic energy fluctuations

As a first application of the tables 8.1 to 8.5 we wish to compute TKE fluctuations in low-energy
fission. The procedure rests on the formulas derived in section 6.3; see section 6.4 for a tutorial. Only
the quantities that enter eqgs. (6.34) have to be fixed with some care, as 10 MeV is now a large chunk of
energy. :

We obtain AU from (6.7). E,,, can be read from table 8.5 and the relevant barrier B from tables
8.2-8.4. The semilength [ at rupture can be taken directly from the prescission shape table 8.5. The
length of descent A/ is simply the difference between the / which can be found in table 8.5 and the
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Table 8.4

Supershort and second standard barriers. The table is organized as table 8.1

Nucleus  Barrier I(fm) r(fm) z(fm) c(fm) s(fm) B'(MeV)
20t supershort 12.6 38 0.0 11.1 0.0 6.6
standard (2nd) 12.0 5.5 2.8 0.6 -03 57
*Es supershort 12.4 4.4 0.1 10.8 0.0 52
standard (2nd) 11.8 5.5 2.6 0.9 -0.3 5.4
PFm supershort 117 52 0.1 6.5 0.0 3.8
standard (2nd) 12.0 5.5 2.8 0.4 -0.3 4.4
“"Fm supershort 1.7 52 0.0 6.5 0.0 32
standard (2nd) 12.0 5.5 2.7 0.6 -0.4 4.0
Fm supershort 1.7 53 0.1 5.8 0.0 2.9
standard (2nd) 12.2 5.4 2.9 0.7 -0.5 4.1
*Md supershort 11.8 5.1 0.0 15 0.0 2.9
standard (2nd) 12.3 5.4 29 0.7 -0.5 31
***Md supershort 11.7 52 0.0 6.5 0.0 2.4
standard (2nd) 12.0 5.5 2.9 0.5 -0.4 32
**No supershort 11.8 5.1 0.0 7.3 0.0 2.9
standard (2nd) 11.9 5.6 23 0.6 -03 2.7
*104]  supershort 115 55 0.1 45 0.0 1.4
standard (2nd) 124 5.4 2.9 0.5 -0.5 1.2
2[108]  supershort 12.5 5.4 0.2 43 0.0 -2.6
standard (2nd) 129 5.5 23 0.8 -0.6 ~2.0

respective barrier tables 8.2-8.4. For example, A/ for superlong is the prescission / of superlong minus
the [ of the superlong barrier. But be careful with the lengths of descent for the standard channels: first,
both standards, I and II, have the same main barrier since they fork only after the second standard
barrier (see fig. 8.1). The differences in Al are caused only by the different lengths of the prescission
shapes. Second, the ‘“‘standard secondary barriers” (cf. fig. 8.1) are never prominent structures. In
contrast, the second standard barrier is always high enough to withhold a nucleus for some time.
Therefore, free sliding starts beyond the second standard barrier even if the first barrier is somewhat
higher. You can find the second standard barrier data either in table 8.2 or table 8.4.

The Coulomb repulsions V., come out as byproducts when the total kinetic energies TKE' of table
7.1 were computed: one just has to subtract the nuclear attraction (4.13) to obtain the pure V. This
means that mass fluctuations were taken into account. See, however, section 6.4 for a simpler recipe to
get VCou'

Inserting these values into (6.34) produces the TKE deviations o in table 8.6 where they are
compared with the experimental results o}

Agreement is agreeable especially in the central region with nuclei ranging from thorium to
einsteinium. Note, in particular, that the superlong o, do not differ much from the o of the standard
channel, both in experiment and theory. This is in marked contrast to the behavior of the mass
deviations o, in table 7.1. Due to the simplicity of our theory, we can explain this fact: the dominating
term in (6.33) is O'ZE’C. It contains the factor V., Al/l. Now V. /I is relatively large in the standard
channel, but its A/ is quite small. In superlong, however, Alis large, but V. /! is so small that it partly
compensates for the size of Al.

Serious discrepancies occur for the standard channel of fermium and for the lightest systems astatine
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Table 8.5
Prescission shapes. E,,, denotes the energy liberated on descent from the ground state to scission. For reasons discussed in section
9.1 we guess that the computed values E, _ are too large, in particular for the heavy nuclei. The channel probabilities p were
obtained either from the mass distributions shown in fig. 7.3 as described in section 7.2 or from the references quoted in the last

column

Nucleus  Channel I(fm) r(fm) z(fm) c(fm) s(fm) E,,(MeV) pZ(%) References

At standard 15.2 1.5 21 124 -17  -156 0.8 fig. 7.3
superlong 17.5 1.5 0.5 12.5 0.1 —6.3 9.2

TAc standard 15.6 1.5 1 118 -1.5 5.8 46 fig. 7.3
superlong 18.2 2.2 0.0 7.2 0.0 6.9 54

*Th standard I 15.5 15 02 202 -16 9.6 29.2 [7.6]
standard II 16.3 1.5 0.3 13.4 -1.6 8.8 69.6
superlong 19.4 21 0.0 5.4 0.0 72 1.2

By standard [ 15.4 1.5 03 225 -13 12.7 16.9 {7.11]
standard 11 16.4 1.5 1.3 16.0 -1.4 14.8 83.0
superlong 21.2 1.8 0.0 5.2 0.0 15.2 0.1

Py standard I 15.8 15 06 210 -1.1 16.8 26.2 (7.1
standard 11 16.6 15 03 172 ~17 18.7 73.8
superlong 214 19 0.0 4.4 0.0 23.1

=2t supershort 14.3 1.5 00 312 0.0 12.4
standard 1 16.6 L5 -0.4 185 -1.2 23.6 8.5 [6.13,6.14]
standard II 17.5 15 0.8 183 -1.4 29.1 62.0
standard II1 217
superasymmetric 18.2 1.5 4.2 12.0 -1.7 18.3 0.5
superlong 21.0 2.6 0.3 25 -0.1 278 13

Es supershort 14.9 15 01 234 -0.2 19.0 13 fig. 7.3
standard 17.2 15 03 123 -1.3 24.3 87

*Fm supershort 15.0 15 02 24 -0.1 25 50 (8.13]
standard 17.2 1.5 0.2 12.1 -1.3 26.6 50

**Fm supershort 14.9 15 0.0 181 0.0 24.7 73 fig. 7.3
standard 17.6 1.5 0.2 11.2 -1.4 28.5 27

¥2(108]  supershort 17.4 15 0.3 8.1 -0.2 61.7
standard 27 17 0.8 57 -1.7 67.9

and actinium. The disagreement in the light systems, by the way, still reflects the reason for the two
cases in eq. (6.14): had we fixed E* = K, =0.25 AU for all systems, similar differences would also show
up in uranium. This exhibits the fact that a two-step function such as (6.14) is too primitive and that a
continuous variation of E*/AU and K /AU with mass number A, is desirable.

Lazarev established a systematics of TKE variances [8.15, 8.16]: at first they grow smoothly with
system size, from o' =~ 60 for A _,~230 to o5 =130 for A_, ~250. Then, suddenly, for some fermium
isotopes, o as large as 600 are reached. Especially those nuclei, about which we know that the
standard and supershort channels contribute with about equal rates, give the largest values, namely
**Fm and **Fm.

When writing his paper Lazarev had no idea on multichannel fission. Hence he gave only the total
TKE variances. If they come from two contributors, say the standard channel with probability p, and
the supershort channel with p_, the superposition formula is

0% = PuOry+ Pu0sy + Py Pu(TKE — TKE, ) . (8.1)
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Insertion of values taken from the tables 7.1, 8.5 and 8.6 typically delivers o ~ 220 for the heaviest
actinides. This aims in the right direction, but it is still too small. However, it seems that Serdyuk and
co-workers [6.10] have solved just this problem by a more realistic and thus more complex model.

8.3. The superlong and the supershort barriers

The next application of the tables 8.1 to 8.5 is to understand the behavior of the channel probabilities
p. as shown in fig. 7.5a. So why is superlong’s p, dominant for light nuclei while it dwindles with
increasing A _,? And why is supershort never able to push standard into oblivion? These questions can
be answered by the height of certain barriers.

However, first the relations between the bifurcation points and the barriers must be clear. Imagine,
for simplicity, only two fission channels, one bifurcation point and several barriers which may be
positioned before or behind the bifurcation, cf. fig. 8.1.

Table 8.6
Fluctuations of the total kinetic energy in low-energy fission. This table is organized as table 6.1: as input we need the excitation energy E* at
scission, the Coulomb energy V., of repulsion between the nascent fragments, the potential-energy difference AU [its relation to E,__is given by
eq. (6.7)], the distance of descent A/ and the semilength / of the prescission shape. Values of o with a = symbol were found by interpretation of
measured o,.(A) functions, see that in fig. 8.7. For example, o(A = 140) was taken as the TKE deviation o, in the standard channel. The other
values were determined by deconvolution of data (see sections 7.2 and 8.5). They are more accurate

Nucleus Channel E* (MeV) Voo (MeV) AU (MeV) Al (fm) [(fm) o, (MeV) o5 (MeV) References

BAL standard 10.0 183 52 2.6 15.2 11 =6 [7.4]
superlong 14.7 172 12.5 6.1 17.5 15 =7

PAc standard 15.8 201 13.1 43 15.6 13 =7 [5.27]
superlong 13.7 181 18.1 6.4 18.2 12 =8

Th standard 1 9.2 208 16.8 43 15.5 10.3 9.6 [7.6]
standard II 8.9 197 16.0 5.1 16.3 11.3 7.7
superlong 6.5 175 17.2 6.7 19.4 9.8 9.4

>y standard [ 73 219 19.2 4.1 15.4 9.0 8.1 [7.11]
standard II 8.1 205 21.3 5.1 16.4 9.5 7.6
superlong 8.2 168 217 8.8 212 10.5 8.1

Hopy standard [ 6.4 224 16.8 4.6 15.8 10.6 6.5 [8.13]
standard I 7.1 213 18.7 5.4 16.6 11.0 9.7
superlong 8.7 174 23.1 8.9 21.4 10.6

®ef supershort 3.1 268 124 1.7 143 5.6 [6.13]
standard I 5.8 236 23.6 4.6 16.6 9.8 7.4
standard 11 7.2 221 29.1 55 17.5 9.8 8.3
standard II1 9.5
superasymmetric 5.5
superlong 6.8 192 27.8 8.4 21.0 111 7.7

*Es supershort 6.2 264 25.0 25 14.9 6.6 =12 [5.8]
standard 7.6 232 30.9 5.4 17.2 10.3 =11

%Fm supershort 5.6 268 22.7 33 15.0 8.8 11 [8.14]
standard 6.5 236 26.6 52 17.2 10.3 19

21108] supershort 15.2 276 61.7 6.8 17.4 12

standard 16.7 212 67.9 12.1 227 12
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Two situations may occur:

(i) The highest barriers of the channels lie behind the bifurcation, and hence the channels have
separate barriers.

(ii) There is only one highest barrier for both channels. It is located before the bifurcation. Behind
the bifurcation lower secondary barriers may be met.

The first situation is shown in fig. 7.1. Pick the superlong and standard channels for example: the first
standard barrier is quite low, bifurcation takes place close to the second minimum, and after that the
huge second standard and superlong barriers rise. [Actually, situation (i) applies rather to nuclei
somewhat lighter than californium, compare tables 8.2 and 8.3.]

Situation (ii) is typical for the relation between the supershort and the standard channels. In the
heaviest actinides, where both channels exist, the first standard barrier is highest (see table 8.2), and the
bifurcation takes place close to the second minimum, see fig. 8.1. Behind the bifurcation, lower barriers
still have to be passed. All nuclei fissioning via the supershort channel must climb the supershort
barrier, and the standard fissioners must surmount the second standard barrier. (The “secondary
standard barriers”, being in fact third barriers, can be neglected for this case.)

The two situations cause different dynamics. Let us first consider a single bifurcation point. It divides
the flux of probability, and we expect that the division is about equal. Here “equal” means less than
one order of magnitude difference. Inertia can drive, for example, 90% of the flux into one channel and
leave only 10% for the other. Now, if there are high barriers behind the bifurcation, the probability
bounces back. The nucleus returns to the second minimum and must undertake another attempt. If one
of the barriers is higher, the nucleus must ride many more attacks against it before penetration
succeeds. So we understand that situation (i) allows for channel probabilities that are different by orders
of magnitudes. o

Situation (ii) can produce only differences of one order of magnitude. After the nucleus has
overridden the primary barrier, the smaller ones are like pebbles. We expect the largest effects in
spontaneous fission.

As mentioned above, situation (i) is typical for the superlong-standard bifurcation, while situation
(ii) applies to the supershort—standard branching. Hence we understand now why the superlong and
standard channels can displace each other, whereas supershort and standard must coexist, as suggested
in fig. 7.5a.

The battle for dominance between superlong and standard is decided, at least for the order of
magnitude, by the changing heights B, and B, documented in the tables 8.2 and 8.3. We have plotted
the barrier-height differences in fig. 8.2. The potential-energy calculations show that B, is lower for
lighter nuclei, but then with increasing mass the standard barrier B, becomes smaller. This generates
those large differences B, — B,, shown in fig. 8.2 for A_ ~230. The differences decrease again in the
heavier nuclei. Comparison with experimental values shows that the theory is right but exaggerates. In
particular, the point of equality is shifted from A_, =224 to A, =217. But such shifts are unavoidable
with the Strutinsky method, as we pointed out in section 8.1.

The way by which the experimental superlong barriers were found is illustrated in fig. 7.7. First some
yields have to be measured at several excitation energies E*. Then one collects, for every E*, the yield
at mass symmetry and at low total kinetic energies to determine, as indicated by egs. (7.1) and (7.5),
the probability p,(E*) of the superlong channel. These data are finally fitted by the function

W,

sl

PalE") = T oo2m(B, — E¥)/hay] (82)
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Fig. 8.2. Excess of the superlong barrier B, over the standard barrier B, as a function of the mass number A_, of the fissioning nucleus.
Computational results are indicated by the hollow circles, measured ones by the full dots. Isotopes of an element are connected by massive lines.
Symbols of some relevant elements are added. The dashed lines are there to indicate the major trends. For the sake of transparency not all the data,
which can be obtained from the tables 8.2 and 8.3, are displayed.

., B, and %, For photofission of ***Th Piessens and co-workers obtained a W, of a
few per cent, B as 8.5-8.7MeV (cf. table 8.3) and %w, as 0.33-0.39 MeV [7.6, 8.10].

A more advanced method to isolate the channel probabilities will be presented in section 8.5. Similar
methods were developed by Nakahara and colleagues [8.11]. For photofission by bremsstrahlung a
convolution has to be performed [7.6] before B, can be extracted.

The struggle between the supershort and standard channels seems to be influenced by the secondary
barriers that are listed in table 8.4. To facilitate comparison with experimental materials, we computed
again the differences B (2nd) — B, and used them to establish table 8.7. The table is arranged
according to increasing differences. One recogmzes that the experimental supershort probabilities p_
increase as these differences grow, with ***Fm as the only possible exception.

Both examples, that in fig. 8.2 and that in table 8.7, represent what is called ‘“monotonicity”: the
Strutinsky method is not good enough to calculate potential energies with high accuracy, but one can
follow certain systematic trends and compare them with measurements.

with parameters W,

Table 8.7
The difference of the two small barriers behind a bifurcation point
and the probability p_, of fission via the supershort channel. The value
quoted for **Fm results from a very crude estimate based on data
presented by Unik et al. [5.8]. It should therefore be considered with
caution. A similar remark applies to **Fm as this is data from a
pioneering experiment

Nucleus  [B_(2nd) — B_]' (MeV) p:. (%) References

2t -0.9 0 [6.13]
*[104]  -0.2 0 [7.9]
**No -0.2 5 [7.9]
*Md 0.2 12 [7.9]
g 0.2 13 [5.8]
2Fm 0.6 =10 [5.8]
**Fm 0.8 50 [7.9]
*Md 0.8 58 [7.9]

*Fm 1.2 =73 [7.10
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8.4. The standard splitting

The systematics of low-energy fission can be understood in terms of the standard, superlong and
supershort channels. Also from the computational point of view, these three channels are easily found
and discriminated. They are also surprisingly stable if important parameters in the microscopic
calculations (see ch. 9) are varied or the representation of the surface (see ch. 2) is changed. Therefore,
there is no doubt on the reality of these channels, and their computed characteristics such as barriers,
bifurcations and prescission shapes should be valid, at least as approximations.

However, standard fission is almost always prevailing and hence experimenters have considered it
favorably. The result of such an inspection can be seen in fig. 8.3. We perceive two components, one
around mass number A = 135 and TKE = 190 MeV (the right-hand side hill), the other close to A =142
and TKE =175 MeV (left-hand side). The first, with the smaller asymmetry, is standard I. It is most
prominent in ***Pu. The second, standard I, appears best in ***Pu.

The standard splitting is no speciality of the plutonium isotopes. First evidence for two standard
channels in ***U was published in [7.11]. It is nowadays also proven that two standards exist in ***Th
[7.6]. Taking suitable data for *°At is more difficult, however the available material is perspicious
enough [7.4,7.5].

In all these recent experiments the standard component was decomposed as indicated by eq. (7.1).
Moreover, it was demonstrated that the channel probabilities of the two standard channels vary a lot
when the external parameters of the reaction are changed only a little [1.8]. However, a mere
decomposition of the standard contribution has long been pursued. Data are available for many more
nuclei, see [8.17] and [8.11]. One can discover both standard components also in the yield Y(A) of
einsteinium shown in fig. 7.3. Here the theorists (we) were too lazy to separate standard I from standard
II. This is the cause of the poor description of the measured yield at A ~135. The neglect of the
standard splitting can also be seen in the slight deepening of the theoretical TKE(A) at the A =~ 135 line,
as standard I gives rise to high kinetic energies. ‘

The standard I prescission shapes are not only less asymmetric than those of standard II but
generally also shorter (see table 8.5). Therefore, standard I prescission shapes make fragments with less
deformation. This must show up in the neutron multiplicities. Refer to fig. 7.4. The effects of the
standard splitting on the neutron multiplicities are outlined in the prediction for thorium: the reduction
of emission is best seen in the total neutron multiplicity, displayed by the dashed line. However, the
simple neutron multiplicity also (full line) exhibits the reduction by a kink at A = 97; this is in **Th the
complement of A = 135. One may reject this as a speculation since no experimental data are at hand for
thorium. However, for 2*°U, measurements and calculations are available, and in both the effects of the
standard splitting can be seen.

Hence the standard I and II channels occur in all preactinides and actinides. The standard splitting
can be seen in the mass and kinetic-energy distributions and in the neutron multiplicities.

A phenomenon that has attracted much attention during the past ten years [6.16], “true cold
fragmentation”, is a side effect of the standard splitting. Loosely spoken, “cold fragmentation” at low
excitation energies is nothing but the tail of the TKE fluctuations discussed in ch. 6: even in standard
fission, prescission shapes may sometimes become very short. The newborn fragments are almost
spherical and stay therefore cold. Due to the large Coulomb repulsion these fragments attain high
kinetic energies. Note the difference to scission via the supershort channel where even on the average
cold fragments are produced. Cold fragmentation via the standard channels, in contrast, is a feature of
rare fluctuations. By frue cold fragmentation one understands TKE fluctuations that exhaust the
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Fig. 8.3. Mountain plot of the fission yields from various plutonium isotopes over the plane of fragment mass number A and total kinetic energy
TKE. The data is taken from {7.8].
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Q-value of the partition. Most remarkably, true cold fragmentation only happens in a certain range of
fragment mass numbers. For nuclei from thorium to californium this range was found invariably around
A =130 and, of course, around A, — A. An example is shown in fig. 8.4. The full, ragged line
represents the limit set by the Q-value, and the dotted and dashed lines give the upper limits of the
TKE fluctuations as measured in different experiments. One can see that these fluctuations touch the
Q-value only at A =102 +5. This observation is explained by the standard I/II splitting: standard I
produces even on the average the shorter prescission shapes. But its TKE fluctuations do not differ
appreciably from those of standard II, see table 8.6. Therefore, it is almost trivial that the fluctuations
of standard I press to the Q-values whereas those of standard II do not.

The display of the theoretical results in fig. 8.4 needs some explanation. We represented the
contributions from the standard channels (st I and st II) and from the superlong channel (sl) by
products of Gaussians

A-A) TKE - A
exp(——-(——-—z—) exp(—[ TIZ(E( ) ) . (8.3)
20, 20%
The Coulomb effect is taken into account by
—— A(A,— A) ——
TKE(A):= ——=——=-TKE. 4
(4) A(A,, - A) (8.4)

With these simplifications of (6.1), (7.5) and (7.6) we drew contours for every channel separately. The
function (8.3) has the value 1 for A = A and TKE = TKE. The averages A and TKE were taken from
table 7.1 and appear in fig. 8.4 as stars. On the ellipsoidal lmes the function (8.3) takes the value

exp(—4)”. Thus the ellipsoids display directly the deviations o', and o'}, presented in the tables 7.1 and
8.6.

sl |
U(n.f) ﬂ
150 T . T e

80 90 100 110 120

Fig. 8.4. Cold fragmentation. Q-values (full zigzag line) according to Wapstra and Audi [4.6] and the limits of the yield Y(A, TKE) for high TKE as
measured by Signarbieux et al. [8.19-8.20] (dashed line) and Clerk et al. [8.19,8.21] (dotted line). The theoretical results are shown as the
ellipsoidal contours around the stars and refer to the standard channels (st [, st IT) and to superlong (sl), as explained in the text.
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The evidence produced up to now shows only that two different standard prescission shapes exist.
But can we also learn how these shapes are reached? Where, for example, is the bifurcation point at
which the two standard channels separate and what is the situation of the barriers? The answers are
contained in fig. 8.1: the standard bifurcation takes place behind the second standard barrier. Behind
the bifurcation low standard secondary barriers are located. This is situation (ii) as introduced in section
8.3. Thus the standard splitting should behave as the standard—supershort bifurcation. Evidence for this
exists, but before we can produce it, we must issue a disclaimer.

The computational separation of standard I and II is difficult. This is because both standard channels
stay close to each other in deformation space. Our theoretical results concerning the standard splitting
do not therefore have the same certainty as the discrimination between the standard, superlong and
supershort channels. The sheer existence of standard I and II is beyond doubt, but details such as the
“standard secondary barriers” (cf. fig. 8.1) are debatable. We stress, in particular, that fig. 8.5 is to be
judged with reservations.

What we wish to explain is the increase of the standard I yield from ***Pu to ***Pu as shown in fig.
8.3. We want to derive it from the changing height of the standard secondary barriers.

See in the upper part of fig. 8.5 a detail of a channel graph of **’Pu. The total graph would look like
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Fig. 8.5. Geometric (top) and energetic (bottom) characteristics of the standard I/11I splitting in the plutonium isotopes. This figure is laid out like
the channel graph 7.1, except that there is no (z, /) projection and that the graph of potential energy over ! is duplicated. The missing standard
counterparts in the lower parts are indicated by the dashed lines. Note that the potential energies are normalized here with respect to the bifurcation
point. Thus E,, — E,, is shown instead of E,, — E,, as in fig. 7.1. The present graph was found using the three-subspace representation (2.14). This
is the reason why we hesitate to claim that these curves are the definitive truth. Our standard secondary barriers have, incidentally, a similarity with
the third hump of the standard barrier as discussed in [8.18].
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the upper part of fig. 7.1 except that there is no supershort channel in plutonium. The present figure
details the piece of the standard channel just behind the big loop. It starts at the X indicating the
second standard barrier. What is not contained in fig. 7.1 but is shown here is the standard bifurcation
point @ with the subsequent standard splitting. We learn from the top right-hand part of fig. 8.5 that
standard I guides to rupture at a shorter semilength /. We find from the top left-hand part that standard
I favors scission with small asymmetries.

It is in fig. 8.5 as in all channel graphs: the geometric characteristics of a channel do not differ much
for a nucleus nearby in charge and mass. So the same upper part is valid for all plutonium isotopes, and
also for uranium and thorium it looks much the same way.

However, the potential energies are different for, say, °*Pu and ***Pu. They are depicted in the
lower parts of fig. 8.5. To maintain complete correspondence to fig. 7.1, both families of curves should
appear in one graph. For better lucidity we disentangled the energy lines and drew the standard I and II
lines, respectively, in separate graphs. Again, all the lines start at the second standard barrier. For
reference a short piece of the displaced channel mate is attached, see the dashed lines.

The bumps in the potential energies are the “secondary standard barriers” declared in fig. 8.1. All
these barriers decrease as we step from the light to the heavy isotopes. But the barriers along standard I
even disappear. Hence we conclude that the standard I channel is partly plugged up in >*°Pu, whereas it
is entirely open in ***Pu. This fits well with fig. 8.3, which shows the larger count of standard I events in
the spontaneous fission of ***Pu.

Fortunately, we have independent evidence for the claim that the standard splitting is a situation-(ii)
bifurcation. Namely with this kind of bifurcation order-of-magnitude differences between the channel
probabilities p,; and p_,; are impossible. In fact, p_,/p,,; varies by not more than from 0.2 to 0.5 [8.13].

This is especially impressive if the same nucleus at different excitation energies is considered.
Schillebeeckx and co-workers [8.13] compared spontaneous fission of >*’Pu with the neutron-induced
fission of 2*Pu. In the second case the nucleus receives 6.3 MeV extra excitation energy, namely the
separation energy of the captured neutron. In a situation-(i) bifurcation that would produce a roaring
effect. However, it was found that nothing dramatic happens with the channel probabilities [8.13]. The
additional excitation energy just broadens the mass distributions as described in eq. (4.8) by the
dependence on temperature 7.

The comparison between measured (¢) and computed (t) values is presented in table 8.8. Relative to
the accuracy of the experimental and theoretical methods the agreement is as good as possible. Similar
comparisons were made for the photon-induced fission of *>>Th, and similar conclusions with respect to
the validity of eq. (4.8) could be drawn [7.6].

Accurate fits of the mass distributions of heavier actinides suggest the existence of a third standard

242

Table 8.8
Broadening of the mass distributions from the
standard channels due to additional excitation
energy. The experimental data is taken from
[8.13]
t

: ¢
Reaction Channel o, A

20pu(sf) standard I 3.9 2.8
®Pun,f) standard1 42 3.6

*Pu(sf) standard I 5.5 5.7
*Pu(n,f) standard I 5.9 6.3
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channel. It is even more asymmetric than the standard II channel and also longer. First hints of
standard III can be seen in the fission of the plutonium isotopes [8.13]. It is distinct in **'Am(n, f) [8.22]
and powerful in *>>Cf(sf), see section 8.5. There is no experimental proof for its independent existence.
In addition, our potential-energy calculations give indications for such a channel, but we do not have
sufficiently reliable results.

Generally we expect that more and more splittings of all major channels will be discovered as soon as
better analysis and instrumentation is at our disposal.

8.5. Californium has everything

Best fission, for the observer, is spontaneous fission since no inducing agent is needed. But the
counting rates of spontaneous fission of natural nuclei are very small, and nuclei with higher fission
rates must be created artifically. Breeding of **>Cf is not too difficult, and its fission half-life is short
enough to observe billions of events within a few weeks. Because of this, we have for *°Cf(sf) data
which are either unique or better than those measured with other nuclei. Among these we shall specify:

(1) a two-dimensional yield Y(A, TKE) of excellent accuracy,

(ii) the superasymmetric fission events,

(iii) contraction gamma rays,

(iv) a two-dimensional neutron multiplicity »(A, TKE).

All these features are related to random neck rupture and multichannel fission. Moreover, some of
them give insights that stimulate further research.

Californium is also peculiar because it has all the fission channels that we are acquainted with, see
tables 7.1, 8.5 and 8.6. According to theory, *’Cf has at the same time superlong and supershort
channels. According to theory and experiment, a superasymmetric channel exists. And a standard III
channel was found by measurements (table 8.5).

Let us start with topic (i). The dependence of the yield on the total kinetic energy is weird, as
pointed out already in section 6.1. But now that we have that dependence from egs. (6.1) and (6.2), we
can establish a representation of Y(A, TKE) that is more accurate than the usual superposition of
products of Gaussians as, for example in eq. (8.3). Take the Y(TKE) from eq. (6.1), rename it as
Y.(TKE) to stress that the parameters (6.3) are different for each channel c¢. To incorporate the
dependence on A, form

vme| b | (A=A, (KA Aat AC)Z)]} p
Y.(A,TKE) =Y ( ) Bmo’ )7 expf Y- ]+ exp 2 - . (8.5)
We have now six fitting parameters, two in addition to A, [ ;. ., [ .. and [, ., namely the average
mass number A_ and the standard deviation o 4. Of the mass distribution. All these parameters reflect
certain propertles of a definite fission channel: h_ describes the relative frequency with which this
channel is populated. It is just a numerically more convement substitute for the channel probability p._.
[ nax.c 18 the semilength with the most favorable potential energy for scission. In fact, these values may
be compared with the computed / of the prescission shape in table 8.5. [, _ is the semilength where the
potential energy becomes too large to allow any scission at all. In other words, /. fixes an absolute
upper bound of TKE, which exists due to Q-value limitations. /.. . is related to the decrease of the
potential energy AU w1th increasing semilength / [cf. (6.6)] since changes of AU modify the spread of
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the prescission shapes and hence also the yield at low TKE. See egs. (6.34) for illustration. All the /
characterize the potential-energy surface (PES) in the direction of the elongation. A, and o, , in
contrast, are associated with the characteristics of the PES in the direction of asymmetry.

The complete formula for the fit can be written as

yield‘(A, TKE) =, Y.(A, TKE) . (8.6)

If there are five fission channels, 30 parameters have to be accommodated. In proportion to the
thousands of data which are reproduced, this is a small number. Our results are given in table 8.9.

The mean mass numbers A can be compared with the A }; in table 7.1, and the [, with the /in table
8.5. Good agreement is found for standard I and II, but also superlong comes out as desired since its
large /.. effects the same as a larger value of /_, : compare the good agreement of TKE® and TKE' in
table 7.1. But the experimental supershort contribution, if it exists, is not represented by the fit. And
last and worst, the calculations for the superasymmetric channel have slipped.

More insight can be obtained from fig. 8.6. Its upper part is a contour plot of the measured yield
yield® [6.14]. Plotting beneath the fitted yield would not help much since the eye could barely see any
difference. But from the errors we can learn something meaningful.

No significant errors occur in the bulk. Only at the edges, where the counting rates, and thus the
yield®, are small, do misfits occur. An insignificant misfit is, for example, the broad beard at low total
kinetic energies as it is caused by unwanted scatterings in the detector.

However, the black patches at high TKE close to mass symmetry are significant. These are the
long-sought-for fingerprints of the supershort channel, which was not taken into account when the fit
was performed. One can even understand that the supershort contribution does not appear exactly at
symmetry. For a long piece of the supershort channel passes, in californium, through asymmetry, as
shown in fig. 7.1.

Likewise the dotted patches are significant. They demonstrate how difficult it is to represent the
superasymmetric component adequately. In the present case, the superasymmetric component is
swallowed by the fluctuations of standard III so that only in the region of transition from standard III to
superasymmetric does a misfit remain, namely the dotted patches.

So we have arrived at topic (ii): the superasymmetric component seems to be special in every respect.
This can be concluded from fig. 8.7: in the mass range above A=~178 and below 74 an almost
discontinuous behavior in TKE(A) and o.(A) is observed. Such a jumpy style is incompatible with a
broad fission channel and indicates that the superasymmetric events are rather produced by cluster

Table 8.9
Parameters for the representation of the yield Y(A, TKE) from spontaneous
fission of >*Cf according to egs. (6.1), (6.2), (8.5) and (8.6) based on the
data from [6.14]. A representation of this kind was first published in [6.13].
The present values are slightly improved, but the values of the superasymmet-
ric parameters are still not more than order-of-magnitude estimates

Channel h A U A o,

standard 1 14110° 101 171 0.103 1349 3.13
standard 11 87110° 137 179 0270 1425 5.00
standard I11 3.1310° 136 187 0318 1485 7.13

superasymmetric 1.7110° 169 20.8 0.165 1786 0.37
superlong 2.8510° 141 182 0405 1275 126
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Fig. 8.6. Upper part: measured yield® [6.14] from the spontaneous
fission of “°Cf as a contour plot over the plane of fragment mass
number A and total kinetic energy TKE. The dashed contours are for
3, 30, 300, 3000 and 30000 counts, from outside inwards, while the full
ones indicate 10, 100, 1000 and 10000 counts, respectively. Lower
part: the errors of a fit with the representation (8.6). The contours are
defined by | yield® — yield"|/yield® =0.5. yield" is computed with the
parameters of table 8.9, except for the superasymmetric contribution,
which was cancelled.
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Fig. 8.7. Yield Y(A), average total kinetic energy TKE(A) and
standard deviation o(A) of the total kinetic energy for the sponta-
neous fission of californium. The figure is taken from {3.15]. The
measurements were done by Budtz-Jgrgensen and Knitter [6.14].

emission [8.23]. This might also be the reason for the poor agreement between our fission channel
calculations and the experimental data, cf. table 7.1.

The superasymmetric events in the spontaneous fission of **°Cf were discovered by Barreau and
co-workers [8.24], but it seems that a similar phenomenon was observed earlier in the fission of >**U
with 2 MeV neutrons [8.25]. Furthermore, superasymmetric events also occur in ***Cm(sf) [8.26]. We
searched for the superasymmetric channel in all these nuclei. For ***Cm we found a channel with similar
characteristics as those given in table 7.1 for *Cf. In particular, we noticed no significant change in the
superasymmetric barrier. We saw no indication of the superasymmetric channel in **U.

Figure 8.7 is still useful for another purpose: the standard deviations o.(A) are the most straightfor-
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ward separators between contributions from different fission channels. There are, for example, peaks in
0:(A) at A=123 and A =~ 129. They limit the reign of the superlong channel. These limits have little to
do with the actual width o, of table 7.1. They just indicate the points where two channels yield about
equal abundance. The mechanism behind is simple superposition: two channels may produce contribu-
tions with similar o, ., but the respective TKE, are usually somewhat different. This produces an
overlap enhancement for the total o, as represented, for example, by the third term in (8.1). Exactly
this observation led Britt and colleagues [1.10] to postulate those two modes of fission that we now call
the standard and the superlong.

Concerning topic (iii): the superlong channel must show up everywhere. We have seen this for the
yield Y(A), total kinetic energy TKE(A) and neutron multiplicities #(A) in section 7.2. But the
superlong channel also makes its mark on the fotal gamma multiplicities.

Refer to fig. 3.2. The deformed fragments shown in fig. 3.2b are charged. As they separate, they will
relax to a nearly spherical shape. This requires a redistribution of charge. An unsteady motion of
charge, however, creates electromagnetic radiation, gamma quanta, in other words. At present the
velocity of relaxation is unknown, nor is it known if it is combined with an oscillation. But it is clear
that, if high-energy contraction gamma quanta exist, they must be preferentially emitted from fragments
created via the superlong channel. For the superlong channel generates the fragments with the largest
deformations.

Usually gamma multiplicities », vary as functions of the gamma energy E. in a Boltzmannian fashion,
proportional to exp(—E,/T). Recently for certain masses an enhancement at E, >1.5MeV was
observed [8.27-8.29]. The respective gamma quanta were separated and their multiplicity was displayed
as a function of the fragment mass number, cf. fig. 8.8. We see that the high-energy gamma rays come
in the mass region characteristic for the superlong contribution. The average value A =126 and the
deviation o, =~ 8 read from fig. 8.8 agree reasonably with the values supplied by table 7.1, which for its
part were obtained from the yield Y(A, TKE). Three further properties fit into the picture. The first is
the average gamma energy of about 4 MeV, which is larger but of the same order as the energies
obtainable from the smaller giant quadrupole oscillations. Second, the share of the multiplicity that the
high-energy gamma quanta contribute is well below 1%. This is compatible with a superlong probability
P, = 1.3% (cf. table 8.5) when one considers that a fragment emits about five gamma quanta. Third,
the high-energy quanta appear as coincident pairs. And in fact, the superlong channel can produce only
two strongly deformed fragments if not very asymmetrical rupture occurs.

Physically the contraction gamma quanta are different from the usual statistical gammas. The
contraction gammas are emitted before the neutrons appear. Most statistical gamma quanta are puffed

0.15 T —T——T——T—
vy (A) + 9, (A') E, > 15 MeV] ;
0.10 .
0.05 |
oo 214 LT

0 100 1o 120 130 1o 150 Aso

Fig. 8.8. Total gamma multiplicity »,(4) + #,(A") (A" = A, — A) as a function of the mass number A of one the fragments. It was thus not decided
from which fragment the high-energy (£, >1.5MeV) gamma quanta came. The data were measured by Schmid-Fabian et al. [8.27, 8.28].
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out only after the evaporation of neutrons. Therefore, the statistical gammas have to be content with
what is left from the higher-priority processes, that is with approximately half of the separation energy
of a neutron. The experimental proof of this fact is also quite new [8.27-8.29].

Finally topic (iv): the general procedure for the prediction of exit-channel observables consists of two
parts: find the prescission shapes and derive the measurable quantities. The first part can be done, in
low-energy fission, by an examination of the potential energy of the scissioning nucleus. This involves
quantum shell effects. The second part is done relying only on continuum mechanics. Such an
inconsistency becomes conspicious as soon as data of higher differentiation are considered. An example
is the neutron multiplicity v(A, TKE) as a function of the fragment mass number and the total kinetic
energy.

Experimentally it is found that the detailed multiplicity may be represented as

91 7(A) [TKE — TKE__(A)] if TKE <TKE,_ (A),

0 otherwise . (8.7)

#(A, TKE) = |

Two one-variable functions TKE, , (A) and 8,4, »(A) are thus sufficient to describe the two-variable
function v(A, TKE) [8.27, 6.14]. The linearity is, of course, an approximation. We expect negative
corrections first because it costs more and more energy when several neutrons are emitted and second,
in the domain of superlong, because of the contraction gammas.

Within the frame of linearity each of the three functions

nA), dre¥(4), TKE, (A) (8.8)

can be expressed by the others. To see this, one inserts eq. (8.7) into the trivial relation

7 #5(A, TKE)Y(A, TKE) d TKE

n(A)= [7Y(A, TKE) d TKE (8.9)
An inessential neglect at the integration limits yields the announced relationship
#(A) = 1, #(A) [TKE(A4) - TKE, , (4)] (8.10)

The average kinetic energy TKE(A) is so well established that it must be considered as given.

Equation (8.10) may be interpreted as follows: the “elastic energy” contained in the fragments just
after scission depends on two factors. One of them is the “elasticity module” of that piece of the
prescission nucleus from which the fragment is to be made. This module is expressed by the slope
function 9. 7(A). In fact, one may identify the total kinetic energy as an inverse measure of the
elongation and the multiplicity as a measure of the elastic energy. The second factor is the deviation
from the average elongation, expressed by the function TKE(A) — TKE_, (A). This factor is the more
trivial one because it contains only the effects described by the plain random neck rupture model. It is
therefore not surprising that it is again a sawtooth curve. But the sawtooth in the slope function, see fig.
8.9, was not expected. The paradox becomes understandable if one remembers that random neck
rupture presumes homogeneous matter. If the prescission nucleus has a substructure, it must fail.
Hence fig. 8.9 may be interpreted by a prescission shape that has a soft neck and two hard heads.
Stretching the shape is facilitated just by the neck; the heads remain inert. The two minima in fig. 8.9
correspond to the masses of these heads. Amusingly enough we find the mass numbers A =~ 28 + 50 and
A=50+82.
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Fig. 8.9. The slope function 37/9TKE defined in (8.7) as a function of fragment mass number A. The measurements, displayed by the dots, were
performed by Budtz-Jgrgensen and Kanitter [6.14]. Schmid-Fabian et al. [8.27] were the first to publish data like these. The full line is the prediction
from plain random neck rupture. The numbers on the prescission shape indicate the stiff heads (80, 130) and the most probable partition (109, 143),
compare [8.28].

9. The theory of fission channels
9.1. Strutinsky’s approach

To reveal the fission channels discussed in the previous two chapters, one must compute the potential
energy of deformed nuclei E,; as a function of the shape coordinates. But even with this ability it
remains to analyze the computed data in the multidimensional space of shape parameters. This is a
tough job for which tools will be presented in the next two sections. Here we only detail our way to
compute the E,;.

Strutinsky’s approach [1.2] was taken in a textbook version [9.1]. The potential energy is composed
of a liquid-drop and a shell part

Egi=Ey+t Egey s 9.1

both depending on deformation.

For the liquid drop part E|; we took the Myers—Swiatecki model [9.2] with its improved set of
parameters [9.3]. The computation of the Coulomb energy of a deformed shape was greatly accelerated
by the use of the double-divergence formula [9.4,9.5]. The integrals were done using numerical
extrapolation methods [9.6] with careful treatment of the singularities.

More modern approaches than the Myers—Swiatecki model are available, for example, folding
techniques [8.5] or semiclassical methods [9.7]. However, folding methods do not admit a curvature
correction, which turned out to be important for the energy landscape close to scission [9.8, 9.9], and no
generally accepted prescription for the usage of the semiclassical methods seems to exist.

The Myers—Swiatecki model admits a curvature correction, but the approved version [9.3] does not
have one. Therefore, our energies E ., of the prescission shapes (table 8.5) are probably too large, that
is, the tails of the potential energy in fig. 7.1 decrease too much.
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The computation of the shell part in (9.1) is broken down in three phases:
(i) Obtain the single-particle spectrum,
(ii) smear it out,
(iii) apply BCS pairing on both spectra.
The difference between the BCS total energies for sharp and smeared spectra is E,.,.
(i) For the single-particle spectrum it takes Hamiltonians for neutrons

2

_p A
Ho=om, T V0 " 50 g & V0 x ol .
and protons
p’ A
H,= 2—]‘72 +V,(r)- 2(MZC)2 s [VV,(r) X p] + Veou(r) - ©-3)

Here p and s denote the vector operators of momentum and spin. M_ and M, are the masses of the
neutrons and the protons, respectively, and V, (r) and V,(r) are their respective single-particle
potentials. We choose them to be of Woods—Saxon type

V,

V. (p, {)=— On : 9.4
AP = T T (L, - RIa) o4

The spin-orbit strength, radius and diffuseness
A=238[1+2(N_ - Z /A, R=124Afm, a=0.65fm (9.5)

are the same for neutrons and protons (N,,, Z,, and A_, denoting the numbers of neutrons, protons
and nucleons in the fissioning nucleus, respectively), but the depths of the potentials

Vi

0,z,n

=53.3[1+0.63(N,, — Z. )/ A | MeV (9.6)
are different [9.10, 9.11]. Finally,

3Z_.¢ d’r
Veoulr) = IR —

(9.7)

(nucleus)

is the Coulomb potential felt by one proton.
Written in cylindrical coordinates p, {, ¢, the function L(p, {) adapts the potentials (9.4) to the
actual shape. We obtain L from the numerical solution of

pshape({R/L;l’ ra Z, C, S)=pR/L (9.8)
This relation coerces the similarity of all equipotential contours [9.12,9.13]. The description of the

surface p,,,.. was introduced in eq. (2.2).
Eigenvalues of (9.2) and (9.3) are found by expanding the eigensolutions in terms of harmonic
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oscillator functions for a spheroid

2 2

M, 0\ pPr+z?
(0, &0y, mmm) = N|a( =232 ) | L (), 2) exp - FEE timg)  09)

with

np! 1/2 Mn,zwp 1/2 Mn,zawp 1/2
N'_(Z"lngl(np+m)!) ’ P"( A ) P Z'_( _h ) £

The respective series were inserted into (9.2) or (9.3). The resulting equations were multiplied from the
left with the complex conjugates of (9.9) and integrated over p, { and ¢ using Gauss—Laguerre and
Gauss—Hermite procedures of order 25 and 20, respectively. The algebraic eigenvalue problem was
solved, reducing the matrices to tridiagonal form and subsequent bisection of the characteristic
polynomial [9.6].

Formulas like (9.9) with their quantum oscillator numbers n,, n,, three-projections of angular
momentum and spin m, m,, generalized Laguerre L"”(x)and Hermite polynomials H,(x) are more
than familiar. We have included them only to indicate the significance of two parameters: the frequency
w, and the ratio a. Choosing these parameters conveniently can save much computational work as
accurate representations of the eigensolutions are obtained with fewer harmonic oscillator functions. w,
is determined by the overall size of the single-particle potential, while « is related to the relative
elongation of the spheroid.

We fix a by the following prescription: define the surface of the spheroid as

2 27172 _
pspheroid(() = {g[ﬁ ({ S) ] for |§ S| < B ’ (910)

elsewhere .

Then minimize

f d{ [pshape({) - pspheroid(gf)]2 . (911)

This gives you, since the position of the centroid s is known from the true surface description Pshape
values for @ and B. We dispense with 8.
The frequency w, is determined by minimization of

f dr (M,, 27 Vo )
I 2 7 1+exp([r - R]/a) (©.12)

with parameters for the Woods—Saxon potential as defined in (9.5) and (9.6). The cut-off radius
r.i=[28/M, ,0°'"* is the zero of the oscillator potential in (9.12). Dispense with 5 and keep {.
Then, as the volume of the spheroid must not depend on the deformation, we obtain

®,.,=2a'". (9.13)
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The indices n and z were affixed to clarify that this frequency is different for neutrons and protons.
Further computational tricks concerning this subject can be found in [9.14].

Normally we took the functions (9.9) from the first 13 main oscillator shells. Checks were performed
with functions from the first 18 shells, in particular for shapes with large deformations. We sometimes
observed changes in the sequence of the levels, but the final result £, was never significantly altered.

(ii) Let {e,} denote the single-particle energies computed as described in the previous phase and
{n,} their multiplicities, for neutrons and protons separately. We obtain from them the sharp level
density as

g(e)= 2 n,o(e—¢,). (9.14)

In contrast, the smeared level density is
56) = —— 3 n P([e - &, y) expl~[(e - &,) 17"} (9.15)
g \/7—7,), ~ vt 6 v 7 p v y . .

The polynomial
Pi(x)=—hx + ' = B+ § ©.16)

is derived from Hermite polynomials along standard lines [9.1]. For the smearing parameter y we fixed
8 MeV.

One has the problem that g(¢) suddenly falls as soon as ¢ approaches the edge of the Woods—Saxon
potential if only the bound states are included in eq. (9.15). We use the first 250 states to keep the
smeared density rising. When we plotted E,_,, as a function of vy, we always found a broad plateau for
small and moderate deformations, normally extending from y=6MeV to y=10MeV. Close to the
prescission shapes, the quality of the plateau deteriorated, but a shoulder near 8 MeV was still seen,
similar to that reported in [9.15]. These features persisted when the number of the pseudofree states
included was varied. However, it emerges from such checks that the absolute accuracy of Strutinsky’s
method is not better than 1 MeV.

(iii) For BCS pairing at temperature T one first introduces the quasiparticle energies

[(e = Ae) + A7 if g0 < 6 < ey
4p = (9.17)
le — Ag| else ,
and computes the gap A and the Fermi level A, from the gap equation
2 _ [ e o) L ann 2
G —700 de g(e) o tanh 3T ° (9.18)

and from the conservation of the average particle number

£
N= f de g(a)(l— '_98 " Jtanh % (9.19)
e qp
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via a Newton-Raphson procedure [9.6] for given pairing strength G and range of pairing forces
(&min> Emax)- FOr N we must substitute the total number of neutrons N, or protons Z  and
correspondingly for g(e) the level density of neutrons or protons. The total energy is

— )t 2
)t nh 5% AG (9.20)

qp

E(g, G,N) = fds g(e)e(l— £

We can use these equations with the sharp and the smeared level densities. If N is even, the shell
correction is

Eshelle(gi G’ N)—E(g’ G, N) (921)

For the treatment of an unpalred nucleon we notice that one can compute the total energy without BCS
by putting G, 4 and A%/G to zero, and by omitting eq. (9.18). We consider the particle on the highest
energy level as unpaired and calculate for it the Strutinsky corrections without pairing:

E,.=E(¢ G#0,N-1)-E(§ G#0,N-1)+ E(§,G=0,N)-E(g§,G=0,N)
-[E(§,G=0,N-1)-E(§,G=0,N-1)]. (9.22)

For the range of the pairing forces (s, , £,,,,) We selected the V3N single-particle energies below
and above the Fermi level. Such a small range was chosen since at large deformations it happens that
the Fermi level comes close to the edge of the potential, and we did not wish to include pseudofree
states in the pairing corrections. For compensation we had to insert a rather large pairing strength
G =34/A_, MeV into eq. (9.18).

All multichannel calculations presented in this review refer to zero temperature 7. Quite a few data
[5.20,7.3-7.5, 8.9, 8.12] at higher temperatures are available so that a theoretical exploration at T # 0
is certainly worthwhile.

9.2. Channel searching

Now that we know how to compute the potential energies E,, for arbitrary deformations, what can
we do with this? They are a six-dimensional data set when the shape parameters (2.1) are employed,
and with the subspaces (2.14) or (2.16) they are still a four-dimensional one. The classical procedure is
to remove all but two parameters by minimization of E, and to plot the result as a contour plot as in
ref. [9.16]. But this may lead to ambiguous interpretations as discussed at the end of section 7.1.

We need at least three shape parameters. To visualize E,, in a three-dimensional space, we can fix
one of them and plot E,; as a function of the two remaining parameters. Such a plot is shown in fig.
9.1a. Next we assign a somewhat different value to the fixed parameter, plot E,, again as a function of
the two others and so forth. In this way we obtain a stack of contour plots containing four-dimensional
information. This was in fact our technique when we started our investigation, and it is still a valuable
means to study bewildering geometrical features.

However, the method is limited to four-dimensional data, and even there it costs a great amount of
computational time. As already pointed out in section 8.1, one is rarely interested in the geometrical
survey displayed by a contour plot. Rather, one wishes to find certain distinguished points such as
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“1/tm

Fig. 9.1. Contour plots of the potential energy E,, — E, (2) and of the shell correction E,,,, (b) in the plane of the semilength / and neck radius r
for *’Cf. The asymmetry z is zero everywhere. The shape representation (2.14) was employed. The numbers at the contours give energies in MeV
so that negative values mean there is a gain. This figure refers immediately to fig. 7.1: the dotted line traces the supershort channel while the dashed
one indicates superlong. The standard and superasymmetric channels cannot be seen because of their asymmetry. The full circle marks the minimum
on the superlong channel defining its prescission shape. Supershort and superlong were found with (g,, ¢,, ¢,) = (1,0, 0), cf. eq. (9.23), which is not
exactly the normal vector needed for steepest descent. However, one can read from this figure how small the change is. Note the large size of the
shell corrections in (b). Strutinsky renormalization with its accuracy of about 1 MeV is therefore likely to give meaningful results.

minima, saddle points, prescission shapes and the low-energy connections between them [8.1]. One can
do this by a search for paths of steepest descent which we call channel searching. Our way to implement
it can be conveniently illustrated in a three-dimensional space (/, r, z) describing elongation, constric-
tion and asymmetry [3.15]. In this space we define a plane

(I-1)gq+(r—r)q,+(z—20)q,=0 (9.23)

by the normal vector (g,, q,, q,) and a starting point (/,, r,, z,) in the three-dimensional space. We ask
the computer to slide on this plane, checking for the minimum value of E,.; compatible with the
constraint (9.23). The computer finally reports the minimal E,, at the point ([;., 7.in> Zmin)> SO that we
have data to enter the dots (I ., "in)> (Pmins Zmin) @A (Zins [oia) into the various projections of a
channel graph like fig. 7.1. Next we shift the starting point so that it is about 0.5 fm apart from the first
one and repeat the sliding. This gives a new minimal E; at a different (/_;., 7,.;n» Zmin)» and once more
we enter its data into fig. 7.1. Doing all this over and over again produces the series of dots in fig. 7.1,
which may be joined to form a line. At this stage we check if the direction of the normal vector was
everywhere at least approximately parallel to the constructed line. When this is not the case, we adjust
the normal vector and repeat the calculation until convergence takes place.

This procedure has the advantage of computing only in the relevant parts of the space. All the more
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important, it is readily generalized to problems with more than four dimensions. Altogether we worked
with three variants:

(i) channel searching in the space (I, r, z), cf. egs. (2.14, 2.15).

(ii) working in the space (I, r, z, c, s), see eqgs. (2.1-2.13), but eliminating z and c for every given /,
r, s by minimization of the liquid-drop energy E,.

(iii) channel searching in the space (/, r, z, c, 5), see egs. (2.1-2.13).

The quantitative comparisons with experiments, as presented in the tables 7.1 and 8.1-8.8 and in the
figs. 7.3, 7.4, 8.2 and 8.4, were achieved with variant (iii).

We played the variants off against each other to check reliability. In addition, we rotated the normal
vectors by angles of 45° around the channels discovered and varied the pairing strength G from 0 to
34/A_, MeV. The standard, superlong and supershort channels satisfied all these tests. In addition, the
standard splitting was confirmed, but with significant changes of the bifurcation point and the secondary
barriers. Our results concerning the superasymmetric channel turned out to be variable.

A renormalization procedure like Strutinsky’s involves a great loss of significant digits, see the minus
signs in eqs. (9.21, 9.22). The relative accuracy of E ., within a small volume of deformation space is at
best 0.1 MeV. Because of this, one should use an algorithm for the minimization that does not depend
on derivative-like information. We applied the Nelder-Mead routine [9.6].

Due to the limited precision of E, ,, locations in the fission channels cannot be more accurate than
0.5 fm. This typically causes errors in TKE' by 5 MeV, by three mass units in A}, by 25% in o', and by
somewhat less than 1 neutron in »', cf. table 7.1.

9.3. Distinguished points

Since the fission channels are nothing more than favorable connections between distinguished points,
these points have to be defined with particular care.

The minima are the simplest. Just minimize E,,; as a function of all available shape parameters.

For saddles take the method of steepest descent as described in the previous section and seek the
maximum along one of the fission channels.

Bifurcation points are found by following two channels and looking where they join.

For the prescission shapes fix the neck radius  and minimize E,  as a function of the remaining
parameters. More precisely, we worked with two variants:

(i) We fixed the normal vector as (g, g,, q,) = (0.7, —0.7,0), cf. eq. (9.23), and shifted the initial
point ([, r,, z,) until the minimum was obtained at r_;, = 1.5 fm.

(i) We fixed the normal vector as (g,, q,, ¢,) = (1, 0, 0) and shifted the initial point (/,, r,, z,) until
the minimum was found at r_; = 1.2 fm,

In shape representations that contained more than the three parameters /, r and z we also executed
minimization with respect to the other parameters. Selecting 1.2fm or 1.5fm as values for r_, was
inspired by the observation that a neck is certainly broken when its radius becomes less than the radius
of a nucleon.

Except for the preactinides, the prescission shape of the superlong channel could be defined as a
minimum as indicated in fig. 7.1. The obstacle, which hinders such a prescission shape from crashing, is
never higher than 2 MeV, cf. fig. 9.1a. Since the nucleus gains more than 10 MeV on the descent from
the superlong barrier, see again fig. 7.1 as well as tables 8.3 and 8.5, the obstacle is easily overridden.

For all quantitative comparisons as in tables 7.1, 8.5, 8.6 and in figs. 7.3, 7.4, variant (i) with the full
set (2.1) of shape parameters was applied. Variant (ii) was used to check the accuracy. Normally the
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differences are small since the capillarity instability enforces abrupt constrictions, that is the neck radius
r changes much while the other parameters remain.

The shell effects, which produce such different prescission shapes as the standard, superlong and
supershort, displace the onset of the capillarity instability. Consequently eq. (3.3) must be modified.
We can write it as

2l=rayl X r. (9.24)

Under a pure liquid-drop regime ray/ is 11. For the supershort channel, however, rayl must be smaller
than that value and for the superlong channel larger. The liquid-drop prescission length is approximate-
ly given by (5.1). If we wish to retain the liquid-drop value as a special case, we must scale ray!
according to

rayl=111/2.4r_ , (9.25)

where [ is the semilength of the respective prescission shape, that is, values taken from table 8.5. In the
case of **>Cf one finds for the standard channel a ray! not far from 11, while rayl is less than 9 for the
supershort channel and more than 12 for the superlong channel.

One can combine (9.24) and (9.25) to compute the radius r of the prescission shape, and end up with
values of 3 fm. This is significantly larger than the 1.2 or 1.5 fm on which the variants (i) and (ii) are
based. Moreover, when one compares the prescission shapes in fig. 7.2 with those in figs. 2.2 or 3.1, one
recognizes that the prescission shapes found by the potential energy have a much too curved neck. This
inconsistency is caused by the marriage of static potential-energy calculations with dynamic random
neck rupture. Due to dynamics, the neck stays thick until rupture happens simply because the matter in
the neck has no time to escape, see section 3.3 and especially fig. 3.4 for a discussion. In addition, a
potential-energy calculation is unable to cover the overstretching. Overstretching, however, is im-
portant as was stressed in section 3.4.

We tried to compensate for all this by taking from table 8.5 only the semilength / and the average
fragment mass number A,; that can be computed by eq. (2.17) from the shape. Then we had to face the
fact that random neck rupture works with a unit radius of 1.15fm, as pointed out in (4.1). The
Myers—Swiatecki model [9.3], on which our potential energy calculations rest, relies on 1.2249 fm.
Consequently, we had to multiply all lengths from the potential-energy calculations by 1.15/1.2249 to
make them meaningful for random neck rupture. We obtained the temperature T at scission from
(6.11), (6.13, 6.14) and (6.7), inserting values from tables 8.1-8.5. We replaced eq. (3.3) by (9.24,
9.25), and then had a straightforward run of the procedures explained in ch. 4. All the results
documented in tables 7.1 and 8.8 and in figs. 7.3, 7.4 and 8.4 were obtained in this way.

9.4. Magic numbers of fission

Powerful shell effects as observed in fig. 9.1b are fundamental for the formation of exit channels in
nuclear fission. These shell effects must be caused by significant gaps in the single-particle spectrum,
and if there are gaps, magic numbers must also exist. These numbers are properties of the fissioning
nuclei. They are listed in table 9.1.

The neutron magic number of the supershort channel is easiest to discuss. Figure 9.2 displays the
neutron single-particle spectrum &, of the nucleus “*Fm as a function of elongation. There is nothing
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Ev
MeV
Table 9.1 -3
Magic numbers of fission. A dash indicates a
magic range, an arrow signals transition. In =4
the case of the standard and superlong chan- 51
nels our evidence concerning neutron magic
numbers or ranges is not sufficiently clear 6
Channel Protons Neutrons 7k
supershort 100 - 108 166 -8 S g
standard 90 - 104 -9 T
superlong 88— 94 2 —HB— 1% |/fm B

Fig. 9.2. Single-particle energies ¢, of the neutrons along the super-
short channel for ***Fm. The neck radius varies with the semilength as
r/fm=1.5-0.67(//fm — 15). The asymmetry is nil. Variant (ii) of
section 9.2 was used for the computation. The legend for the various
types of lines can be found in fig. 9.4.

special with ***Fm; all nuclei of similar size show almost the same features. You will notice two large
gaps, one at moderate deformations with 82 levels below it so that 164 neutrons fit in, the other gap
above the 83rd level at larger stretching. According to table 8.5 the supershort channel ruptures at
[=15fm. At a semilength of /~13.5fm the liquid-drop energies are so adverse that even a very
favorable shell cannot induce scission. 166 is therefore the correct magic neutron number for supershort
fission [5.9,9.15].

Things are slightly more complicated for supershort’s magic proton number. When we look at fig. 9.3
we do not find a definite gap, but rather a broad zone of level thinning. Thus 100, 102, 104, 106 and
108, but also the odd intermediate values, appear as valid proton numbers. Therefore it might be
appropriate to speak of a magic range 100-108, as entered in table 9.1.

Magic ranges can generate an exit channel in a broad spectrum of nuclei. Of course, even if a magic
number is sharp, several nuclides can take advantage of its existence, but the supershort channel in a
nucleus such as *’*[110] (fig. 7.5) is rendered possible only by a magic range.

This holds all the more for the standard channel. The limits within which its magic proton number
can range are especially wide, see table 9.1, explaining the universality of the standard channel
throughout many preactinides and all the actinides (section 7.3).

The situation is different with the superlong channel. We see in fig. 9.4 a major gap at 94 protons.

12 13 14 U/fm 15
Fig. 9.3. The same as fig. 9.2, but for protons.
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oA
-—EV— [""]__linetype
MeV [
_7 TR
+++++
gt ———
oA
-10 ———
1 .
1) b NG Nt
B 16 17 18 19 20 21l/fm
Fig. 9.4. Similar as fig. 9.2 but for protons along the superlong Fig. 9.5. Contour plot of the fifty first single-proton wavefunction.
channel. The calculation was made for **U. The superlong channel Shown is the squared modulus, and the numbers at the contours give
was parametrized according to r/fm = 0.25{[(//fm - 20)* +0.25]' densities times 10° fm’. This is the wavefunction belonging to the
— I/fm} + 6.88. The energies ¢, are distinguished with respect to the energy below 102 in fig. 9.3. Note the concentration of probability in
three-projection of the total angular momentum m, = m + m_, which the central part.

is conserved in axisymmetrical shapes.

From this we conclude that the plutonium isotopes should have the most impressive superlong
prescission shapes. This seems to be true, cf. table 8.5. On the other hand, there is a gap below the
proton number 88, but this occurs at smaller elongations. Liquid-drop energies are here not adverse to
hindering the nucleus from breaking. We have therefore an explanation of why the superlong
prescission shape is so much longer for plutonium than for astatine or actinium, cf. table 8.5, and need
not resort to the argument that in those lighter nuclei shell effects disappear.

One can associate some magic numbers of the fissioning nucleus with the magic numbers of fragments.
The supershort magic number 166 is almost the sum 82 + 82. In addition, the lower limit 90 of the
standard channel’s magic range can be construed as 40 + 50. A similar interpretation for the superlong
channel is impossible as no symmetric decomposition of 88 or 94 exists. Nevertheless, one can say that
the magic numbers of fission are sums of the magic numbers of the fragments plus some nucleons for
the neck. For the supershort channel this is illustrated in fig. 9.5. However, for the superlong channel
the number of nucleons to be added becomes so large that the argument loses credibility.

The idea that clusters are preformed in the fissioning nucleus so that magic fragments are
preferentially produced was probably first developed by Wildermuth and coworkers. They reviewed
their work in [9.17]. Based on cluster theory, the events, which we now call supershort, were predicted
long before measurements were made [9.18]. Computations using the two-center shell model made
these ideas more quantitative [9.19-9.21]. The two-center shell model is suited for such investigations
as it favors the formation of clusters by its prepared centers. Studies based on Woods—Saxon
[9.15,9.16,3.15] or Yukawa-folded potentials [9.22] are not preconditioned in this way and yield,
therefore, the magic clusters only as an approximation. In this context we want to draw attention to a
paper [9.23] that contains several improvements over [9.22], in particular for the shape dependences of
the Wigner and A° terms and a more appropriate smoothing range.

The papers [9.15], [9.16] as well as [9.24], [3.15] and [5.9] present results that confirm each other.
For example, the magic neutron number 166 was obtained in [5.9] and [9.15]. In addition, the standard,
supershort and superlong prescission shapes were identified in [5.9] and [9.15], with similar semilengths.
The bifurcation points between the standard and the supershort channels, published in [9.16], are
situated as shown in fig. 8.1 of this report.
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10. Homage

Much in this report is a confrontation with the scission-point model of nuclear fission. The
differences can be condensed into two points:

(i) In the scission-point model, the exit channel observables are derived from an equilibrium state.
Random neck rupture relies on a sequence of instabilities.

(ii) In the scission-point model, the shell effects of the, possibly deformed, fragments play the
dominant role. Multichannel fission is based on the shell effects of the fissioning nucleus before decay.
Despite these contrasts, a paper by Wilkins, Steinberg and Chasman (WSC) [1.4], which advocates the
scission-point ideas, has served us as an example. This work has several attractive features:

WSC theory keeps things as simple as possible and rather goes at things. Its main goal is to order a
gigantic body of data. Theoretical subtleties have been put aside.

WSC theory is based on pictures. Such an approach is flexible since advanced formal methods can be
incorporated as soon as they become available. All the more important, the basic ideas are spread with
much more ease when one can resort to representative pictures. Figures 1 and 2 in [1.4], for example,
were the basis for thousands of discussions on nuclear fission.

WSC theory was systematically compared with experiments. The paper [1.4] contains a comprehen-
sive discussion on the prominent trends of yields and total kinetic energies throughout the actinides. In
addition, many special experimental findings are discussed to corroborate the theory. This differs much
from the numerous models of nuclear reactions that were introduced to fit the needs of one fashionable
experiment.

One can discover many analogies in the present work. Figures 3.1 and 7.1 are the basic pictures of
random neck rupture and multichannel fission. In ch. 5, the experimental evidence for random neck
rupture is compiled, including not only data from fission but also from deep-inelastic reactions.
Ch. 7 contains a survey on the evidence for multichannel fission with yields, total kinetic energies and
neutron multiplicities. Chapter 8 comprises many additional points that can be adduced for corrobora-
tion.

After all, the present work is in many respects a continuation of what was done with the
scission-point model. The prescission shape is not entirely different from the scission-point configura-
tion. The former contains the physics shortly before rupture, the latter briefly afterwards. And some of
the magic numbers of fission (section 9.4) are nothing more than the sum of the magic numbers of
the fragments plus some nucleons for the neck. These relations are the reason for the considerable
success of the scission-point model. If one thinks in such terms of continuation, one may say that
the present work is just a tracing back of the scission-point configuration into the internals prior to
scission.

But this tracing back is not complete. We still make the difference between entrance and exit
channels (see the title of this review) and cannot compute from the initial settings all one needs for the
exit-channel observables. Specifically, we cannot calculate the channel probabilities p,, introduced in
the eqgs. (7.1) to (7.3). Hence following fission from the onset till the formation of fragments is the next
problem fission research should solve. Some of the first steps in this direction were presented in section
7.5. Theoretically, lifetime calculations as in [10.1, 10.2] will prove to be valuable exercises.

Two fundamental concepts of scission dynamics, which will play a prominent role in future
developments, were neglected in this report: inertia (see, however, sections 3.3 and 3.4) and friction
(section 3.5). We now want to quote at least some papers that discuss the state of the art for inertia,
namely [10.2], and for friction, namely [10.3, 10.4].
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