ОПЕРАТИВНЫЙ КОНТРОЛЬ КАЧЕСТВА ПИТЬЕВОЙ ВОДЫ

Пискарев И.М. (piskarev@depni.sinp.msu.ru)(1), Ушканов В.А. (1), Аристова Н.А., (2), Мысливец Т.С. (2)

(1) НИИ ядерной физики им. Д.В.Скобельцына МГУ им. М.В.Ломоносова, (2) Нижнетагильский технологический институт (филиал) Уральского государственного технического университета (УПИ)

В настоящее время ни для кого не секрет, что питьевая вода по целому ряду причин может оказаться некачественной. Все понимают, что необходимо прилагать какие-то усилия для того, чтобы пить по возможности более чистую воду.

Бизнесмены предлагают большой выбор услуг по улучшению качества питьевой воды. Это различные очистные устройства и готовая к употреблению питьевая вода. Однако не следует забывать, что задача бизнеса - получение прибыли, а не забота о вашем здоровье. И прибыль увеличивается, если технологические приёмы по очистке воды упрощать, сокращать и, вообще, не применять. В очистных приборах при массовом выпуске можно использовать более дешёвые некондиционные детали и материалы. Например, в фильтры подготовленный плохо онжом засыпать недостаточно И очищенный фильтрующий материал. Всё это делает актуальной задачу оперативного контроля качества потребляемой вами воды и приобретаемых для её очистки приспособлений.

В настоящее время известно около 1300 веществ, опасных для здоровья. Предельно допустимые концентрации (ПДК) этих веществ в воде доходят до единиц и десятков микрограмм на литр. Обнаружение таких количеств вещества является сложной и дорогостоящей задачей. Поэтому даже в крупных специализированных лабораториях испытания воды проводятся по сильно ограниченному числу основных параметров (обычно 10 - 25 параметров по выбору заказчика анализа). В воде могут содержаться ядовитые вещества с концентрацией, в десятки раз превышающей ПДК, однако если вы не заказываете найти именно это вещество, то при стандартном анализе оно не будет обнаружено. Например, присутствие цианидов или фенола с концентрацией в 10ПДК не повлияет на результаты стандартного анализа.

При анализе воды существует стандартная процедура выпаривания и определения сухого остатка. Взвешивание осадка позволяет определить общее содержание солей в воде. Наблюдение цвета осадка и характера его изменения при нагревании до температуры выше 100 °C позволяет сделать качественные выводы о составе примесей воды. Выпаривание воды может производить каждый у себя дома. Для определённости следует выпаривать одинаковое количество воды. В своих опытах, результаты которых будут ниже, мы выпаривали всегда 0,5 литра воды. Для выпаривания нужна только колба из химического стекла (чтобы склянка не лопнула при нагреве и кипячении). Колбу можно взять объёмом 250 мл и по мере выпаривания добавлять в неё оставшуюся воду.

Количество осадка позволяет оценить общее содержание солей, окрашивание осадка - наличие загрязняющих примесей. Соли, не вредные для здоровья, при выпаривании дают белый осадок. Любое окрашивание свидетельствует о наличии опасных примесей. Опасные примеси дают, как правило, чёрный или коричневый оттенок. Разница в характере воды хорошо видна на стадии, когда её осталось немного. На рис. 1 слева представлена колба, в которой находилась водопроводная вода, справа цифрой 2 обозначена колба, в которой была дистиллированная вода.

Когда осадок уже получен, можно определить, являются ли загрязняющие вещества органическими или неорганическими соединениями. Для этого колбу нужно нагреть до температуры существенно выше 100 °C, т.е. поставить колбу на огонь или на горячую конфорку и выдержать 1 - 2 минуты. Органические соединения начнут разлагаться. Осадок начнёт чернеть. Появится запах гари. По запаху можно даже догадаться, что это было за вещество. После прокаливания органических соединений и их полного выгорания осадок остаётся белым. Если осадок - неорганические соли, то в процессе прокаливания запах не появляется и окрашивание осадка, как правило, остаётся, хотя цвет может немного измениться. Рассмотрим теперь осадок, образующийся после выпаривания 0,5 л воды разного вида.

Природная вода.

Водопроводная вода. На станциях водоподготовки вода чистая. Однако, проходя трубы, которые, как правило, сильно загрязнены, вода сама загрязняется. Типичный пример остатка от выпаривания почти всей воды представлен на рис. 1 (колба 1), высушенный осадок - на рис. 2 (колба 1). Окрашивание остатка воды и осадка свидетельствует о наличии вредных примесей.

Рисунок 1. Остаток от выпаривания 0,5 л воды на конечной стадии. Объём колбы 250 мл. 1 - вода водопроводная; 2 - вода дистиллированная.

Дистиллированная вода, полученная в стеклянном дистилляторе и хранившаяся не более суток после выпаривания, не оставляет ничего. Из рис. 1

(колба 2) видно, что после выпаривания почти всей пробы воды (0,5 л) её цвет и прозрачность остаются такими же, как в исходной воде. Вода из металлического дистиллятора, хранившаяся в стеклянном сосуде больше недели, оставляет небольшой белый налёт на дне колбы.

Рисунок 2. Осадок от выпаривания 0,5 л воды: 1 - водопроводная вода; 2 - очищенная установкой серии Пилимин.

Родниковая вода. Осадок белый (см. рис. 3, колба 1). Наблюдается небольшое окрашивание осадка, свидетельствующее о некотором, но не опасном, загрязнении. Распределение осадка по поверхности стекла характеризует солевой состав: при наличии гидрокарбонатов вся поверхность колбы остаётся покрытой белым налётом. Если гидрокарбонатов нет - осадок лежит на дне. Встречаются родники, выходящие из земли в поле (см. рис. 4, колба 1). Осадок такой воды часто бывает окрашен в коричневый цвет, как видно из рисунка 4. Это свидетельствует о наличии загрязнений.

Колодезная вода. Вода из хорошо очищенных колодцев даёт только белый осадок (рис. 3 и 4, колбы 2). Весной во время таяния снегов и половодья в колодец может попадать вода с поверхности. Тогда осадок будет окрашен в коричневый цвет.

Речная вода. Всегда оставляет коричневый осадок, свидетельствующий о её загрязнении (рис. 5, колба 1).

Вода из артезианских скважин. Осадок всегда белый, если нет железа (рис.5, колба 2). При наличии железа осадок красно-бурый. Вода из скважин может содержать избыточное количество солей кальция и гидрокарбонатов. При закипании такая вода становится белой. В процессе кипячения в колбе раздаются резкие хлопки и колба начинает подпрыгивать. Хлопки связаны с тем, что карбонаты и соли кальция оседают на горячее дно, при кипении куски осадка с грохотом отрываются от стекла. Выпарить всю воду в этом случае не удастся,

колба будет всё время скакать, ударяться о поверхность нагревателя, и может разбиться либо ускакать с нагревателя, опрокинуться и разбиться. Воду, содержащую избыток солей и примеси железа, можно пить после того, как довести до кипения, дать отстояться сутки и слить сверху слой прозрачной воды.

Рисунок 3. Осадок от выпаривания 0,5 л родниковой воды (колба 1) и колодезной воды с малым содержанием солей (колба 2).

Рисунок 4. Осадок от выпаривания воды из родника, бьющего в поле (колба 1), и колодезной воды с нормальным содержанием солей (колба 2).

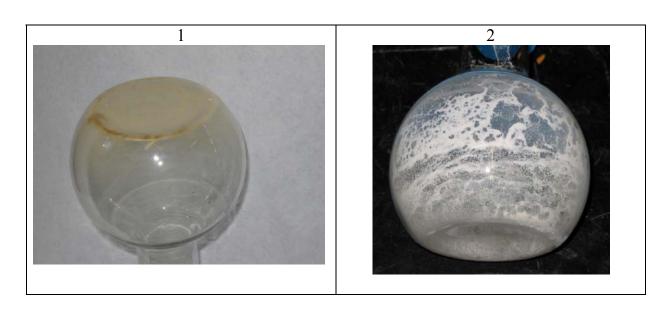


Рисунок 5. Осадок после выпаривания 0,5 л воды: речная (колба 1), из артезианской скважины (колба 2).

Сравнение различных способов очистки воды. Очистка воды с применением высокоэффективных фильтров.

Такой способ очистки широко используется при промышленном получении воды, разливаемой в бутыли. Источником воды является, как правило, артезианская скважина. Вода из скважины практически с гарантией не содержит загрязнений, характерных для поверхностных вод, обусловленных остатками органических веществ. Однако артезианская вода может содержать техногенные загрязнения, обусловленные захоронением промышленных отходов в подземные полости. Непосредственно из скважины вода часто оказывается непригодной для питья из-за большого содержания солей кальция, железа, сероводорода и других неорганических соединений. Поэтому такая вода перед разливом в бутыли подвергается тщательной многоступенчатой очистке, включающей отстаивание, фильтрование, озонирование. Вода становится чистой, в ней не остаётся практически ничего. Однако вряд ли такую воду следует считать полезной, так как организму требуются соли, и природная питьевая вода, на которой выросли люди, содержит их довольно много.

Пример родниковой воды приведён на рис. 6 (колба 1) в сравнении с промышленно разливаемой водой Белогорье, прошедшей многоступенчатую фильтрацию (колба 2).

Другой пример приведён на рис. 7. Колба 1 - вода, очищенная по природной технологии прибором серии Пилимин с сохранением солевого состава, колба 2 - вода, прошедшая сложную многоступенчатую очистку, включающую обратный осмос, и разливаемая под торговой маркой "Королевская вода". Согласно результатам анализа, помещённым на сайте производителя [1], в этой воде почти ничего нет. Осадка действительно практически нет, и содержание солей намного меньше, чем в природной воде. Однако такую ситуацию вряд ли можно считать полезной. В отличие от неё, вода, полученная по природной технологии в генераторе холодной плазмы серии Пилимин [2], полностью сохраняет солевой состав.

Рисунок 6. Осадок от выпаривания 0,5 л воды: природная питьевая родниковая (колба 1), вода Белогорье, производится в Нижнем Тагиле (колба 2).

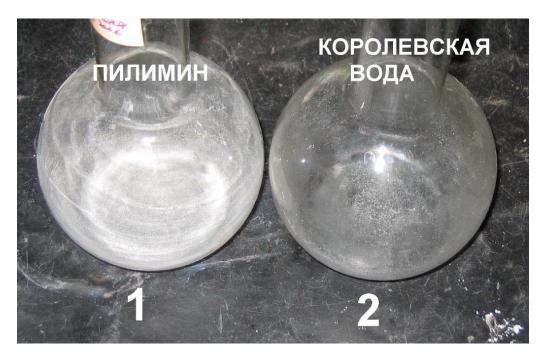


Рисунок 7. Осадок от выпаривания 0,5 л воды: полученной по природной технологии с сохранением солевого состава на установке серии Пилимин (колба 1), Королевская вода (колба 2).

Вода, полученная с помощью дешёвых домашних фильтров.

Пример такой воды приведён на рис. 8 и 9. Из рисунков видно, что простые фильтры могут убирать некоторое количество загрязнений. Сравните колба 2 на рис. 8 и колба 2 на рис. 9 с водопроводной водой (колба 1 на рис. 2). Однако из-за некачественной загрузки картриджа количество загрязнений может возрасти (колба 1, рис. 9). Вода, полученная по природной технологии [2], чистая и имеет хороший солевой состав (колба 3 на рис. 9).

Рисунок 8. Осадок от выпаривания проб воды объёмом 0,5 литра: 1 - исходная водопроводная вода, 2 - вода после пористого титанового фильтра.

Рисунок 9. Осадок после выпаривания 0,5 л воды, очищенных бытовыми фильтрами типа "кувшин" с угольным картриджем: колба 1 - фильтр Аквафор, колба 2 - фильтр Брита, колба 3 - установка серии Пилимин.

Ссылки.

- 1. Сайт www.kingwater.ru
- 2. Сайт http://depni.sinp.msu.ru/~piskarev